Below is the syntax highlighted version of Queens.java
from §2.3 Recursion.
/****************************************************************************** * Compilation: javac Queens.java * Execution: java Queens n * * Solve the 8 queens problem using recursion and backtracing. * Prints out all solutions. * * Limitations: works for n <= 25, but slows down considerably * for larger n. * * Remark: this program implicitly enumerates all n^n possible * placements (instead of n!), but the backtracing prunes off * most of them, so it's not necessarily worth the extra * complication of enumerating only permutations. * * * % java Queens 3 * * % java Queens 4 * * Q * * * * * * Q * Q * * * * * * Q * * * * * Q * * Q * * * * * * * Q * * Q * * * * % java Queens 8 * Q * * * * * * * * * * * * Q * * * * * * * * * * * Q * * * * * * Q * * * * * Q * * * * * * * * * * * * Q * * * Q * * * * * * * * * * Q * * * * * * ... * ******************************************************************************/ public class Queens { /*************************************************************************** * Return true if queen placement q[n] does not conflict with * other queens q[0] through q[n-1] ***************************************************************************/ public static boolean isConsistent(int[] q, int n) { for (int i = 0; i < n; i++) { if (q[i] == q[n]) return false; // same column if ((q[i] - q[n]) == (n - i)) return false; // same major diagonal if ((q[n] - q[i]) == (n - i)) return false; // same minor diagonal } return true; } /*************************************************************************** * Prints n-by-n placement of queens from permutation q in ASCII. ***************************************************************************/ public static void printQueens(int[] q) { int n = q.length; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (q[i] == j) StdOut.print("Q "); else StdOut.print("* "); } StdOut.println(); } StdOut.println(); } /*************************************************************************** * Try all permutations using backtracking ***************************************************************************/ public static void enumerate(int n) { int[] a = new int[n]; enumerate(a, 0); } public static void enumerate(int[] q, int k) { int n = q.length; if (k == n) printQueens(q); else { for (int i = 0; i < n; i++) { q[k] = i; if (isConsistent(q, k)) enumerate(q, k+1); } } } public static void main(String[] args) { int n = Integer.parseInt(args[0]); enumerate(n); } }