
Introduction
to

Programming in Java

An Interdisciplinary Approach

Robert Sedgewick
and

Kevin Wayne

Princeton University

O N L I N E P R E V I E W

Introduction
to

Programming in Java

An Interdisciplinary Approach

Robert Sedgewick
and

Kevin Wayne

Princeton University

O N L I N E P R E V I E W

Copyright © 2007 by Robert Sedgewick and Kevin Wayne

For information on obtaining permission for use of material from this work, please submit a request

to the authors at rs@cs.princeton.edu and wayne@cs.princeton.edu.

Preliminary version created May 6, 2007

iii

ThE basIs fOR EducatION IN thE last millennium was “reading, writing, and arith-
metic;” now it is reading, writing, and computing. Learning to program is an

essential part of the education of every student in the sciences and engineering.
Beyond direct applications, it is the first step in understanding the nature of com-
puter science’s undeniable impact on the modern world. This book aims to teach
programming to those who need or want to learn it, in a scientific context.

Our primary goal is to empower students by supplying the experience and
basic tools necessary to use computation effectively. Our approach is to teach stu-
dents that writing a program is a natural, satisfying and creative experience (not an
onerous task reserved for experts). We progressively introduce essential concepts,
embrace classic applications from applied mathematics and the sciences to illus-
trate the concepts, and provide opportunities for students to write programs to
solve engaging problems.

We use the Java programming language for all of the programs in this book—
we refer to Java after programming in the title to emphasize the idea that the book
is about fundamental concepts in programming, not Java per se. This book teaches
basic skills for computational problem-solving that are applicable in many modern
computing environments, and is a self-contained treatment intended for people
with no previous experience in programming.

This book is an interdisciplinary approach to the traditional CS1 curriculum,
where we highlight the role of computing in other disciplines, from materials sci-
ence to genomics to astrophysics to network systems. This approach emphasizes for
students the essential idea that mathematics, science, engineering, and computing
are intertwined in the modern world. While it is a CS1 textbook designed for any
first-year college student interested in mathematics, science, or engineering (in-
cluding computer science), the book also can be used for self-study or as a supple-
ment in a course that integrates programming with another field.

Preface

iv

Coverage The book is organized around four stages of learning to program: ba-
sic elements, functions, object-oriented programming, and algorithms (with data
structures). We provide the basic information needed for readers to build confi-
dence in writing programs at each level before moving to the next level. An es-
sential feature of our approach is to use example programs that solve intriguing
problems, supported with exercises ranging from self-study drills to challenging
problems that call for creative solutions.

Basic elements include variables, assignment statements, built-in types of
data, flow of control (conditionals and loops), arrays, and input/output, including
graphics and sound.

Functions and modules are the student’s first exposure to modular program-
ming. We build upon familiarity with mathematical functions to introduce Java
static methods, and then consider the implications of programming with func-
tions, including libraries of functions and recursion. We stress the fundamental
idea of dividing a program into components that can be independently debugged,
maintained, and reused.

Object-oriented programming is our introduction to data abstraction. We em-
phasize the concepts of a data type (a set of values and a set of operations on them)
and an object (an entity that holds a data-type value) and their implementation
using Java’s class mechanism. We teach students how to use, create, and design data
types. Modularity, encapsulation, inheritance and other modern programming
paradigms are the central concepts of this stage.

Algorithms and data structures combine these modern programming para-
digms with classic methods of organizing and processing data that remain effec-
tive for modern applications. We provide an introduction to classical algorithms
for sorting and searching as well as fundamental data structures (including stacks,
queues, and symbol tables) and their application, emphasizing the use of the scien-
tific method to understand performance characteristics of implementations.

Applications in science and engineering are a key feature of the text. We moti-
vate each programming concept that we address by examining its impact on spe-
cific applications. We draw examples from applied mathematics, the physical and
biological sciences, and computer science itself, and include simulation of physical
systems, numerical methods, data visualization, sound synthesis, image process-
ing, financial simulation, and information technology. Specific examples include a
treatment in the first chapter of Markov chains for web page ranks and case studies
that address the percolation problem, N-body simulation, geographic data visual-

v

ization, and the small-world phenomenon. These applications are an integral part
of the text. They engage students in the material, illustrate the importance of the
programming concepts, and provide persuasive evidence of the critical role played
by computation in modern science and engineering.

Our primary goal is to teach the specific mechanisms and skills that are need-
ed to develop effective solutions to any programming problem. We work with com-
plete Java programs and encourage readers to use them. We focus on programming
by individuals, not library programming or programming in the large (which we
treat briefly in an appendix).

Use in the Curriculum This book is intended for a first-year college course
aimed at teaching novices to program in the context of scientific applications.
Taught from this book, prospective majors in any area of science and engineer-
ing will learn to program in a familiar context. Any student completing a course
based on this book will be well-prepared to apply their skills in later courses in sci-
ence and engineering and to recognize when further education in computer science
might be beneficial.

Prospective computer science majors, in particular, can benefit from learning
to program in the context of scientific applications. A computer scientist needs the
same basic background in the scientific method and the same exposure to the role
of computation in science as does a biologist, an engineer, or a physicist.

Indeed, our interdisciplinary approach enables colleges and universities to
teach prospective computer science majors and prospective majors in other fields
of science and engineering in the same course. We cover the material prescribed by
CS1, but our focus on applications brings life to the concepts and motivates stu-
dents to learn them. Our interdisciplinary approach exposes students to problems
in many different disciplines, helping them to more wisely choose a major.

Whatever the specific mechanism, the use of this book is best positioned early
in the curriculum. First, this positioning allows us to leverage familiar material
in high school mathematics and science. Second students who learn to program
early in their college curriculum will then be able to use computers more effectively
when moving on to courses in their specialty. Like reading and writing, program-
ming is certain to be an essential skill for any scientist or engineer. Students who
have grasped the concepts in this book will continually develop that skill through
a lifetime of reaping the benefits of exploiting computation to solve or to better
understand the problems and projects that arise in their chosen field.

vi

Prerequisites Our aim is for the book to be suitable for typical science and en-
gineering students in their first year of college. That is, we do not expect preparation
significantly different from other entry-level science and mathematics courses.

Mathematical maturity is important. While we do not dwell on mathematical ma-
terial, we do refer to the mathematics curriculum that students have taken in high
school, including algebra, geometry, and trigonometry. Most students in our target
audience (those intending to major in the sciences and engineering) automatically
meet these requirements. Indeed, we take advantage of their familiarity with the
basic curriculum to introduce basic programming concepts.

Scientific curiosity is also an essential ingredient. Science and engineering students
bring with them a sense of fascination in the ability of scientific inquiry to help ex-
plain what goes on in nature. We leverage this predilection with examples of simple
programs that speak volumes about the natural world. We do not assume any spe-
cific knowledge beyond that provided by typical high-school courses in mathemat-
ics, physics, biology, or chemistry.

Programming experience is not necessary, but also is not harmful. Teaching pro-
gramming is our primary goal, so we assume no prior programming experience.
But writing a program to solve a new problem is a challenging intellectual task, so
students who have written numerous programs in high school can benefit from
taking an introductory programming course based on this book (just as students
who have written numerous essays in high school can benefit from an introductory
writing course in college). The book can support teaching students with varying
backgrounds because the applications appeal to both novices and experts alike.

Experience using a computer is also not necessary, but also is not at all a problem.
Every college student nowadays uses a computer regularly, to communicate with
friends and relative, listen to music, process photos, and many other activities. The
realization that they can harness the power of their own computer in interesting
and important ways is an exciting and lasting lesson for most students.

In summary, virtually all students in science and engineering are prepared to take a
course based on this book as a part of their first-semester curriculum.

vii

Goals What can instructors of upper-level courses in science and engineering
expect of students who have completed a course based on this book?

We cover the CS1 curriculum, but anyone who has taught an introductory
programming course knows that expectations of instructors in later courses are
typically high: each instructor expects all students to be familiar with the computing
environment and approach that he or she wants to use. A physics professor might
expect some students to design a program over the weekend to run a simulation; an
engineering professor might expect other students to be using a particular package
to numerically solve differential equations; or a computer science professor might
expect knowledge of the details of a particular programming environment. Is it
realistic to meet such diverse expectations? Should there be a different introductory
course for each set of students? Colleges and universities have been wrestling with
such questions since computers came into widespread use in the latter part of the
20th century. Our answer to them is found in this common introductory treatment
of programming, which is analogous to commonly accepted introductory courses
in mathematics, physics, biology, and chemistry. An Introduction to Programming
strives to provide the basic preparation needed by all students in science and en-
gineering, while sending the clear message that there is much more to understand
about computer science than programming. Instructors teaching students who
have studied from this book can expect that they have the knowledge and experi-
ence necessary to enable them to adapt to new computational environments and to
effectively exploit computers in diverse applications.

What can students who have completed a course based on this book expect to ac-
complish in later courses?

Our message is that programming is not difficult to learn and that harness-
ing the power of the computer is rewarding. Students who master the material in
this book are prepared to address computational challenges wherever they might
appear later in their careers. They learn that modern programming environments,
such as the one provided by Java, help open the door to any computational prob-
lem they might encounter later, and they gain the confidence to learn, evaluate, and
use other computational tools. Students who have learned from this book have the
potential to substantially enrich their experience through computation, whatever
their chosen field.

viii

Booksite An extensive amount of information that supplements this text may
be found on the web at

http://www.cs.princeton.edu/IntroProgramming

For economy, we refer to this site as the booksite throughout. It contains material
for instructors, students, and casual readers of the book. We briefly describe this
material here, though, as all web users know, it is best surveyed by browsing. With a
few exceptions to support testing, the material is all publicly available.

One of the most important implications of the booksite is that it empow-
ers instructors and students to use their own computers to teach and learn the
material. Anyone with a computer and a browser can begin learning to program
by following a few instructions on the booksite. The process is no more difficult
than downloading a media player or a song. As with any web site, our booksite is
continually evolving. It is an essential resource for everyone who owns this book. In
particular, the supplemental materials are critical to our goal of making computer
science an integral component of the education of all scientists and engineers.

For instructors, the booksite contains information about teaching. This in-
formation is primarily organized around a teaching style that we have developed
over the past decade, where we offer two lectures per week to a large audience,
supplemented by two class sessions per week where students meet in small groups
with instructors or teaching assistants. The booksite has presentation slides for the
lectures, which set the tone.

For teaching assistants, the booksite contains detailed problem sets and pro-
gramming projects, based on exercises from the book, but with much more de-
tail. Each programming assignment is intended to teach a relevant concept in the
context of an interesting application while presenting an inviting and engaging
challenge to each student. The progression of assignments embodies our approach
to teaching programming. The booksite fully specifies all the assignments and pro-
vides detailed, structured information to help students complete them in the al-
lotted time, including descriptions of suggested approaches and outlines for what
should be taught in class sessions.

For students, the booksite contains quick access to much of the material in the
book, including source code, plus extra material to encourage self-learning. Solu-
tions are provided for many of the book’s exercises, including complete program
code and test data. There is a wealth of information associated with programming
assignments, including suggested approaches, checklists, FAQs, and test data.

ix

For casual readers (including instructors, teaching assistants, and students!),
the booksite is a resource for accessing all manner of extra information associated
with the book’s content. All of the booksite content provides web links and other
routes to pursue more information about the topic under consideration. There is
far more information accessible than any individual could fully digest, but our goal
is to provide enough to whet any reader’s appetite for more information about the
book’s content.

Acknowledgements

x

xi

Preface iii

Basic Elements of Programming 3
1.1 Your First Program 4
1.2 Built-in Types of Data 14
1.3 Conditionals and Loops 46
1.4 Arrays 86
1.5 Input and Output 120
1.6 Case Study: Random Web Surfer 160

2 Functions 179
2.1 Static Methods 180
2.2 Libraries and Clients 188
2.3 Recursion 224
2.4 Case Study: Percolation 254

3 Object-Oriented Programming 283
3.1 Data Types 284
3.2 Creating Data Types 336
3.3 Designing Data Types 376
3.4 Case Study: N-body Simulation 396

4 Algorithms and Data Structures 423
4.1 Performance 424
4.2 Sorting and Searching 462
4.3 Stacks and Queues 500
4.4 Symbol Tables 556
4.5 Case Study: Small World Phenomenon 598

Context 643

Contents

