
Compile and Runtime Errors in Java

Mordechai (Moti) Ben-Ari

Department of Science Teaching

Weizmann Institute of Science

Rehovot 76100 Israel

http://stwww.weizmann.ac.il/g-cs/benari/

January 24, 2007

This work is licensed under the Creative Commons Attribution-Noncommercial-No Derivative

Works 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/

by-nc-nd/2.5/; or, (b) send a letter to Creative Commons, 543 Howard Street, 5th Floor, San

Francisco, California, 94105, USA.

Acknowledgement
Otto Seppälä and Niko Myller contributed many helpful suggestions.

Contents

1 Introduction 5

2 Compile-time Errors 6

2.1 Syntax errors . 7

2.1.1 . . . expected . 7

2.1.2 unclosed string literal . 7

2.1.3 illegal start of expression . 8

2.1.4 not a statement . 8

2.2 Identifiers . 10

2.2.1 cannot find symbol . 10

2.2.2 . . . is already defined in . 10

2.2.3 array required but . . . found . 10

2.2.4 . . . has private access in . 10

2.3 Computation . 11

2.3.1 variable . . . might not have been initialized 11

2.3.2 . . . in . . . cannot be applied to . 11

2.3.3 operator . . . cannot be applied to . . . ,. 12

2.3.4 possible loss of precision . 12

2.3.5 incompatible types . 12

2.3.6 inconvertible types . 13

2.4 Return statements . 13

2.4.1 missing return statement . 13

2.4.2 missing return value . 14

2.4.3 cannot return a value from method whose result type is void . 14

2.4.4 invalid method declaration; return type required 14

2.4.5 unreachable statement . 15

2.5 Access to static entities . 15

2.5.1 non-static variable cannot be referenced from a static context . . 16

2.5.2 non-static method cannot be referenced from a static context . . 16

3

3 Runtime Errors 17

3.1 Out of range . 18

3.1.1 ArrayIndexOutOfRange . 18

3.1.2 StringIndexOutOfRange . 18

3.2 Dereferencing null . 18

3.2.1 NullPointerException . 18

3.3 Computation . 20

3.3.1 InputMismatchException . 20

3.3.2 IllegalFormatException . 20

3.3.3 NumberFormatException . 20

3.3.4 ArithmeticException . 20

3.4 Insufficient memory . 21

3.4.1 outOfMemoryError . 21

3.4.2 StackOverFlowArea . 21

3.5 Program execution . 22

3.5.1 NoClassDefFoundError . 22

3.5.2 NoSuchMethodFoundError: main 23

4 Assignment and equality 24

4.1 String equality . 24

4.2 Assignment of references . 25

5 On debugging without a debugger 26

5.1 Printing number data and arrays . 26

5.2 Converting objects to strings . 27

5.3 Forcing a stack trace . 28

5.4 Leave the debug statements in the program 28

4

Chapter 1

Introduction

Compilers are notorious for their obscure error messages like “not a statement” that
leave you wondering what they mean. JAVA is the most widely used language for
teaching and learning introductory programming, and most students and teachers
use the Sun SDK (System Development Kit) either directly or indirectly through a
development environment like BlueJ or DrJava. The error messages produced by
this compiler are terse and many novices find it difficult to achieve even syntactically
correct programs. This document is a guide to understanding and fixing errors in
JAVA. Chapter 2 lists the error messages from the compiler and describes typical
mistakes that give rise to them. Chapter 3 does the same for runtime exceptions.
Chapter 4 is a short discussion of equality and assignment in JAVA, while Chapter 5
presents ways of debugging without the use of a debugger.

The ECLIPSE development environment has its own compiler for JAVA. While the
environment is not as elementary as those intended for novices, it has much to rec-
ommend it—even in introductory courses—because of its superior error messages
and its support for identifying and correcting syntax errors. The compiler is incre-
mental meaning that it checks the correctness of your program as you type. ECLIPSE

error message are different from those of the Sun SDK and will be presented along-
side them.

If you doubt that an error message is correct, you can consult the formal definition of
the JAVA language which is contained in the book The Java Language Specification by
James Gosling, Bill Joy, Guy L. Steele Jr. and Gilad Bracha. It can also be downloaded
from http://java.sun.com/docs/books/jls/index.html.

5

Chapter 2

Compile-time Errors

Before we discuss the various errors, it is important to understand that compilers are
not very good at recovering from errors. Frequently, a single small mistake will cause
the compiler to issue a cascade of messages. For example, in the following code, we
forgot to write the closing brace of the method f:

class MyClass {

void f() {

int n = 10;

// Error, closing brace is missing

void g() {

int m = 20;

}

}

An attempt to compile the program results in three error messages:

MyClass.java:5: illegal start of expression

void g() {

^

MyClass.java:8: ’;’ expected

}

^

MyClass.java:9: ’}’ expected

^

Do not invest any effort in trying to fix multiple error messages! Concentrate on
fixing the first error and then recompile.

ECLIPSE is much better at diagnosing this error and produces only one message:
Syntax error, insert "}" to complete MethodBody.

6

2.1 Syntax errors

Some errors are caused by violations of the syntax of JAVA. Although they are easy
to understand, there is no easy way to find the exact cause of such errors except by
checking the code around the location of the error character by character looking for
the syntax error.

2.1.1 . . . expected

The syntax of JAVA is very specific about the required punctuation. This error occurs,
for example, if you forget a semicolon at the end of a statement or don’t balance
parentheses:

if (i > j // Error, unbalanced parentheses

max = i // Error, missing semicolon

else
max = j;

Unfortunately, this syntax error is not necessarily caught precisely at the point of the
mistake so you must carefully check the preceding characters in the line or even in a
previous line in order to find the problem.
ECLIPSE:
Syntax error, insert ") Statement" to complete IfStatement.
Syntax error, insert ";" to complete Statement
ECLIPSE is more informative as to the precise syntax error encountered.

2.1.2 unclosed string literal

String literals must be enclosed in quotation marks.1 This error occurs if you fail to
terminate the literal with quotation marks. Fortunately, the syntax of JAVA requires
that a string literal appear entirely on one line so the error message appears on the
same line as the mistake. If you need a string literal that is longer than a single line,
create two or more literals and concatenate them with +:

String longString =

"This is first half of a long string " +

"and this is the second half.";

ECLIPSE: String literal is not properly closed by a double-quote. In ECLIPSE you
can write a string literal of arbitrary length and the environment will break the string
and insert the + automatically.

1A literal is a source-code representation of a value; most literals are of primitive types like int or
char, but there are also literals of type String and the literal null of any reference type.

7

2.1.3 illegal start of expression

Most programming constructs are either statements or expressions. This error occurs
when an expression is expected but not found. In JAVA, an assignment statement is
considered to be an expression which returns a value, so errors concerning expressions
also apply to assignment statements.2 Examples:

• An extra right parenthesis after the condition of an if-statement:

if (i > j)) // Error, extra parenthesis

max = i;

ECLIPSE: Syntax error on token ")", delete this token.3 ECLIPSE diagnoses this
as a simple syntax error and does not mention expressions.

• Forgetting the right-hand side of an assignment statement:

max = ; // Error, missing right-hand side

ECLIPSE: Syntax error on token "=", Expression expected after this token.

2.1.4 not a statement

This error occurs when a syntactically correct statement does not appear where it
should. Examples:

• Writing an assignment statement without the assignment operator:

max ; // Error, missing =

ECLIPSE:
Syntax error, insert "AssignmentOperator Expression"

to complete Expression.

• Misspelling else:

if (i > j)

max = i;

els ; // Error, else not spelled correctly

The reason you do not get “else expected” is that you need not write an else

alternative so this just looks like a bad statement.

2The value of an assignment statement considered as an expression is the value of the expression on
the right-hand side that is assigned to the variable on the left-hand side.

3The syntax of a programming language is defined in terms of tokens consisting of one or more
characters. Identifiers and reserved keywords are tokens as are single characters like + and sequences
of characters like !=.

8

ECLIPSE:
els cannot be resolved4

Syntax error, insert "AssignmentOperator Expression"
to complete Expression.

• The following code:

if (i > j)

max = i;

els // Error, else not spelled correctly

max = j;

results in a weird error message:

x.java:6: cannot find symbol

symbol : class els

location: class x

els

The reason is that the compiler interprets this as a declaration:

els max = j;

and can’t find a class els as the type of the variable max.
ECLIPSE:
Duplicate local variable max
els cannot be resolved to a type.
These messages are more helpful: first, the use of the word type instead of class
is more exact because the type of a variable need not be a class (it could be a
primitive type or interface); second, the message about the duplicate variable
gives an extra clue as to the source of the error.

• The error can also be caused by attempting to declare a variable whose name is
that of a reserved keyword:

void f() {

int default = 10;

}

ECLIPSE: Syntax error on token "default", invalid VariableDeclaratorId.

4The same identifier can be used in different methods and classes. An important task of the compiler
is to resolve the ambiguity of multiple uses of the same identifer; for example, if a variable is declared
both directly within a class and also within a method, the use of its unqualified name is resolved in
favor of the local variable. This error message simply means that the compiler could not obtain an
(unambiguous) meaning for the identifier els.

9

2.2 Identifiers

2.2.1 cannot find symbol

This is probably the most common compile-time error. All identifiers in JAVA must
be declared before being used and an inconsistency between the declaration of an
identifier and its use will give rise to this error. Carefully check the spelling of the
identifier. It is easy to make a mistake by using a lower-case letter instead of an
upper case one, or to confuse the letter O with the numeral 0 and the letter l with the
numeral 1.

Other sources of this error are: calling a constructor with an incorrect parameter
signature, and using an identifier outside its scope, for example, using an identifier
declared in a for-loop outside the loop:

int[] a = {1, 2, 3};

int sum = 0;

for (int i = 0; i < a.length; i++)

sum = sum + a[i];

System.out.println("Last = " + i); // Error, i not in scope

ECLIPSE: . . . cannot be resolved.

2.2.2 . . . is already defined in . . .

An identifier can only be declared once in the same scope:

int sum = 0;

double sum = 0.0; // Error, sum already defined

ECLIPSE: Duplicate local variable sum.

2.2.3 array required but . . . found

This error is caused by attempting to index a variable which is not an array.

int max(int i, int j) {

if (i > j) return i;

else return j[i]; // Error, j is not an array

}

ECLIPSE: The type of the expression must be an array type but it resolved to int.

2.2.4 . . . has private access in . . .

It is illegal to access a variable declared private outside its class.
ECLIPSE: The field . . . is not visible.

10

2.3 Computation

This group of errors results from code that is syntactically correct but violates the
semantics of JAVA, in particular the rules relating to type checking.

2.3.1 variable . . . might not have been initialized

An instance variable declared in a class has a default initial value.5 However, a local
variable declared within a method does not, so you are required to initialize it before
use, either in its declaration or in an assignment statement:

void m(int n) { // n is initialized from the actual parameter

int i, j;

i = 2; // i is initialized by the assignment

int k = 1; // k is initialized in its declaration

if (i == n) // OK

k = j; // Error, j is not initialized

else
j = k;

}

The variable must be initialized on every path from declaration to use even if the
semantics of the program ensure that the path cannot be taken:

void m(int n) {

int i;

if (n == n) // Always true

i = n;

else
n = i; // Error, although never executed!!

}

ECLIPSE: The local variable . . . may not have been initialized.

Note: If the expression in the if-statement can be computed at compile-time:

if (true) // OK

if (’n’ == ’n’) // OK

the error will not occur.

2.3.2 . . . in . . . cannot be applied to . . .

This error message is very common and results from an incompatibility between a
method call and the method’s declaration:

5A class is a template that is used to create or instantiate instances called objects. Since memory is
allocated separately for each object, these variables are called instance variables.

11

void m(int i) { ... }

m(5.5); // Error, the literal is of type double, not int

Check the declaration and call carefully. You can also get the error message cannot
find symbol if the declaration of the method is in the API.6

ECLIPSE: The method . . . in the type . . . is not applicable for the arguments

2.3.3 operator . . . cannot be applied to . . . ,. . .

Operators are only defined for certain types, although implicit type conversion is
allowed between certain numeric types:

int a = 5;

boolean b = true;
int c = a + b; // Error, can’t add a boolean value

double d = a + 1.4; // OK, int is implicitly converted to double

ECLIPSE: The operator + is undefined for the argument type(s) int, boolean.

2.3.4 possible loss of precision

This error arises when trying to assign a value of higher precision to a variable of
lower precision without an explicit type cast. Surprisingly, perhaps, floating point
literals are of type double and you will get this message if you try to assign one to a
variable of type float:

float sum = 0.0; // Error, literal is not of type float

The correct way to do this is to use a literal of type float or an explicit type cast:

float sum = 0.0f; // OK

float sum = (float) 0.0; // OK

ECLIPSE: Type mismatch: cannot convert from double to float.

2.3.5 incompatible types

JAVA checks that the type of an expression is compatible with the type of the variable
in an assignment statement and this error will result if they are incompatible:

boolean b = true;
int a = b; // Error, can’t assign boolean to int

ECLIPSE: Type mismatch: cannot convert from boolean to int.

6The Application Programming Interface (API) describes how to use the library of classes supplied as
part of the JAVA system. By extension, it is also used as a name for the library itself.

12

Important note

In the C language it is (unfortunately!) legal to write

if (a = b)

using the assignment operator instead of

if (a == b)

using the equality operator. The meaning is to execute the assignment,
convert the value to an integer and use its value to make the decision
for the if-statement (zero is false and non-zero is true). In JAVA, the as-
signment is legal and results in a value, but (unless a is of type boolean!)
this error message will result because the expression in an if-statement
must be of type boolean, not int. Writing == instead of = becomes a sim-
ple compile-time error in JAVA, whereas in C this error leads to runtime
errors that are extremely difficult to find.

2.3.6 inconvertible types

Not every type conversion is legal:

boolean b = true;
int x = (int) b; // Error, can’t convert boolean to int

ECLIPSE: Type mismatch: cannot convert from . . . to

2.4 Return statements

There are a number of errors related to the structure of methods and their return
statements; in general they are easy to fix.

2.4.1 missing return statement

When a method returns a non-void type, every path that leaves the method must have
a return-statement,7 even if there is no way that the path can be executed:

int max(int i, int j) {

if (i > j) return i;

else if (i <= j) return j;

// Error: what about the path when i>j and i<=j are both false?!!

}

7A path may also leave the method via a throw statement.

13

Adding a dummy alternative else return 0; at the end of the method will enable
successful compilation.
ECLIPSE: This method must return a result of type int. This ECLIPSE message is
rather hard to understand because, clearly, the method does return a result of type
int, just not on all paths.

2.4.2 missing return value

A method returning a type must have a return-statement that includes an expression
of the correct type:

int max(int i, int j) {

return; // Error, missing int expression

}

ECLIPSE: This method must return a result of type int.

2.4.3 cannot return a value from method whose result type is void

Conversely, a return-statement in a void method must not have an expression:

void m(int i, int j) {

return i + j; // Error, the method was declared void

}

ECLIPSE: Void methods cannot return a value.

2.4.4 invalid method declaration; return type required

Every method except constructors must have a return type or void specified; if not, this
error will arise:

max(int i, int j) {

...

}

The error frequently occurs because it is easy to misspell the name of a constructor;
the compiler then thinks that it is a normal method without a return type:

class MyClass {

MyClass(int i) { ... }

Myclass(int i, int j) { ... } // Error because of the lowercase c

}

ECLIPSE: Return type for the method is missing.

14

2.4.5 unreachable statement

The error can occur if you write a statement after a return statement:

void m(int j) {

System.out.println("Value is " + j);

return;
j++;

}

The check is purely syntactic, so the error will occur in the following method:

if (true) {

return n + 1; // Only this alternative executed, but ...

}

else {

return n - 1;

n = n + 1; // ... this is an error

}

ECLIPSE: Unreachable code.

2.5 Access to static entities

The modifier static means that a variable or method is associated with a class and
not with individual objects of a class.8 Normally, static entities are rarely used in JAVA

(other than for the declaration of constants), because programs are written as classes
to be instantiated to create at least one object:

class MyClass {

int field;

void m(int parm) {

field = parm;

}

public static void main(String[] args) {

MyClass myclass = new MyClass(); // Create object

myclass.m(5); // Call object’s method

System.out.println(myclass.field); // Access object’s field

}

}

Some teachers of elementary programming in JAVA prefer to start with a procedural
approach that involves writing a class containing static variables and static methods
that are accessed from the main method without instantiating an object as was done
above:

8static has other uses that we do not consider here: (a) as a modifier for nested classes and (b) in
static initializers.

15

class MyClass1 {

static int field;

static void m(int parm) {

field = parm;

}

public static void main(String[] args) {

m(5); // OK

System.out.println(field); // OK

}

}

2.5.1 non-static variable . . . cannot be referenced from a static context

Since the method main is (required to be) static, so must any variable declared in the
class that is accessed by the method. Omitting the modifier results in a compile-time
error:

int field; // Forgot "static"

...

System.out.println(field); // Error, which field?

The variable field does not exist until an object of the class is instantiated, so using
the identifier field by itself is impossible before objects are instantiated. Further-
more, it is ambiguous afterwards, as there may be many objects of the same class.
ECLIPSE: Cannot make a static reference to the non-static field

2.5.2 non-static method . . . cannot be referenced from a static context

Similarly, a non-static method cannot be called from a static method like main; the
reason is a bit subtle. When a non-static method like m is executed, it receives as an
implicit parameter the reference to an object. (The reference can be explicitly referred
to using this.) Therefore, when it accesses variables declared in the class like field:

void m(int parm) { // Forgot "static"

field = parm; // Error, which field?

}

public static void main(String[] args) {

m(5);

}

it is clear that the variable is the one associated with the object referenced by this.
Thus, in the absence of an object, it is meaningless to call a non-static method from a
static method.
ECLIPSE:
Cannot make a static reference to the non-static method . . . from the type

16

Chapter 3

Runtime Errors

When the JAVA interpreter encounters an error during runtime it throws an exception
and prints a stack trace showing the entire call stack—the list of methods called from
the main program until the statement that caused the exception.1 Consider the fol-
lowing program:

class Test {

public static void main(String[] args) {

String s = "Hello world";

System.out.println(s.substring(10,12));

}

}

We are trying to extract a substring of the string s but the upper index 12 is not within
the string. Attempting to execute this code will cause an exception to be thrown:

Exception in thread "main"

java.lang.StringIndexOutOfBoundsException:

String index out of range: 12

at java.lang.String.substring(Unknown Source)

at Test.main(Test.java:4)

The exception was thrown from within the library class String during the execution
of the method substring. This method was called at line 4 of method main in the class
Test. It is unlikely that there is an error that causes an exception in a well established
class of the JAVA library like String; more likely, the String class itself identified the
error and threw the exception explicitly, so we are advised to seek the error starting
at the deepest method of our own program.

The calls in the stack trace are listed in reverse order of invocation, that is, the first
call listed is the deepest method (where the exception occurred), while the last call
listed is the shallowest method, namely main.

1Many programming languages prefer the term raises an exception and even The Java Language Spec-
ification uses this term on occasion.

17

Exceptions can be caught by writing a block of code called an exception handler that
will be executed when an exception is thrown.2 Exception handlers are discussed in
textbooks on the JAVA language; here we limit ourselves to explaining the exceptions
that indicate programming errors. We further limit ourselves to exceptions com-
monly thrown by the language core; classes in the API define their own exceptions
and these are explained in the API documentation.

3.1 Out of range

These exceptions are the most common and are caused by attempting to access an
array or string with an index that is outside the limits of the array or string. C pro-
grammers will be familiar with the difficult bugs that are caused by such errors which
“smear” memory belonging to other variables; in JAVA the errors cause an exception
immediately when they occur thus facilitating debugging.

3.1.1 ArrayIndexOutOfRange

This exception is thrown when attempting the index an array a[i] where the index
i is not within the values 0 and a.length-1, inclusive. Zero-based arrays can be con-
fusing; since the length of the array is larger than the last index, it is not unusual to
write the following in a for-statement by mistake:

final static int SIZE = 10;

int a = new int[SIZE];

for (int i = 0; i <= SIZE; i++) // Error, <= should be <

for (int i = 0; i <= a.length; i++) // Better, but still an error

3.1.2 StringIndexOutOfRange

This exception is thrown by many methods of the class String if an index is not within
the values 0 and s.length(), inclusive. Note that s.length() is valid and means the
position just after the last character in the string.

3.2 Dereferencing null

3.2.1 NullPointerException

A variable in JAVA is either of a primitive type such as int or boolean or of a reference
type: an array type, the type of a class defined in the JAVA API such as String, or
the type of a class that you define such as MyClass. When declaring a variable of a

2An alternate terminology is to say that an exception is handled by an exception handler.

18

reference type, you only get a variable that can hold a reference to an object of that
class. At this point, attempting to access a field or method of the class will cause the
exception NullPointerException to be thrown:3

public static void main(String[] args) {}

MyClass my; // Can hold a reference but doesn’t yet

my.m(5); // Throws an exception

}

Only after instantiating the class and executing the constructor do you get an object:

public static void main(String[] args) {}

MyClass my; // Can hold a reference but doesn’t yet

my = new MyClass(); // Instantiates an object and assigns reference

my.m(5); // OK

}

This exception is not often seen in this context because JAVA style prefers that the
declaration of the variable include the instantiation as its initial value:

public static void main(String[] args) {}

MyClass my = new MyClass(); // Declaration + instantiation

my.m(5); // OK

}

If the variable is declared directly within its class, you should initialize it either at its
declaration or within the constructor:

class YourClass {

MyClass[] my; // Can’t initialize here because ...

YourClass(int size) { // ... size of array different for each

object my = new MyClass[size];

}

}

The exception is likely to occur when you declare an array whose elements are of
reference type. It is easy to forget that the array contains only references and that
each element must be separately initialized:

MyClass[] my = new MyClass[4]; // Array of references

my[1].m(5); // Raises an exception

for (int i = 0; i < my.length; i++)

my[i] = new MyClass(); // Instantiate objects

my[1].m(5); // OK

3The name of the exception is an anachronism, because there are no (explicit) pointers in JAVA.

19

Finally, NullPointerException will occur if you get a reference as a return value from
a method and don’t know or don’t check that the value is non-null:4

Node node = getNextNode();

if (node.key > this.key) ... // Error if node is null!

if (node != null) { // This should be done first

if (node.key > this.key) ...

}

3.3 Computation

The following three exceptions occur when you try to convert a string to a number
and the form of the string does not match that of a number, for example "12a3".

3.3.1 InputMismatchException

This exception is thrown by the class Scanner, which is a class introduced into version
5 of JAVA to simplify character-based input to programs.

3.3.2 IllegalFormatException

This exception is thrown by the method format in class String that enables output
using format specifiers as in the C language.

3.3.3 NumberFormatException

This exception is thrown by methods declared in the numeric “wrapper” classes such
as Integer and Double, in particular by the methods parseInt and parseDouble that
convert from strings to the primitive numeric types.

3.3.4 ArithmeticException

This exception is thrown if you attempt to divide by zero.

4You could know this if the method has been verified for a postcondition that specifies a non-null
return value.

20

Important note

Most computational errors do not result in the raising of an exception!
Instead, the result is an artificial value called NaN, short for Not a Number.
This value can even be printed:

double x = Math.sqrt(-1); // Does not throw an exception!

System.out.println(x);

Any attempt to perform further computation with NaN does not change
the value. That is, if x is NaN then so is y after executing y = x+5. It follows
that an output value of NaN gives no information as to the statement that
first produced it. You will have to set breakpoints or use print statements
to search for it.

3.4 Insufficient memory

Modern computers have very large memories so you are unlikely to encounter these
exceptions in routine programming. Nevertheless, they can occur as a side effect of
other mistakes.

3.4.1 outOfMemoryError

This exception can be thrown if you run out of memory:

int a = new int[100000000];

3.4.2 StackOverFlowArea

A stack is used to store the activation record of each method that is called; it contains
the parameters and the local variables as well as other information such as the return
address. Unbounded recursion can cause the Java Virtual Machine to run out of
space in the stack:

int factorial(int n) {

if (n == 0) return 1;

else return n * factorial(n + 1); // Error, you meant n - 1

}

21

3.5 Program execution

You can run a JAVA program from within an environment or by executing the inter-
preter from the command line:

java Test

where Test is the name of a class containing a main method.

Suggestion: It is convenient to write main methods in most classes and to use then
for testing classes individually. After the classes are integrated into a single program,
you only need ensure that the interpreter is invoked on the class that contains the
“real” main method.

Two runtime errors can occur if the interpreter is not successful in finding and run-
ning the program.

3.5.1 NoClassDefFoundError

The interpreter must be able to find the file containing a class with the main method,
for example, Test.class. If packages are not used, this must be in the directory
where the interpreter is executed. Check that the name of the class is the same as the
name of the file without the extension. Case is significant!

Warning! If you are compiling and running JAVA from a command window or shell
with a history facility, you are likely to encounter this error. First, you compile the
program:

javac MyClass.java

and then you recall that line and erase the c from javac to obtain the command for
the interpreter:

java MyClass.java

Unfortunately, MyClass.java is not the name of the class so you will get this excep-
tion. You must erase the .java extension as well to run the interpreter:

java MyClass

If you are using packages, the main class must be in a subdirectory of that name. For
example, given:

package project1.userinterface;

class Test {

public static void main(String[] args) {

...

}

}

22

the file Test.class must be located in the directory userinterface that is a subdi-
rectory of project1 that is a subdirectory of the directory where the interpreter is
executed:

c:\projects> dir

<DIR> project1

c:\projects> dir project1

<DIR> userinterface

c:\projects> dir project1\userinterface

Test.class

The program is invoked by giving the fully qualified name made up of the package
names and the class name:

c:\projects> java project1.userinterface.Test

3.5.2 NoSuchMethodFoundError: main

This error will occur if there is no method main in the class, or if the declaration is not
precisely correct: the static modifier, the void return type, the method name main

written in lower case, and one parameter of type String[]. If you forget the public

modifier, the error message is Main method not public.

23

Chapter 4

Assignment and equality

JAVA programmers make mistakes in the use of the assignment and equality oper-
ators, especially when strings are used. The concept of reference semantics is (or
should be) explained in detail in your textbook, so we limit ourselves to a reminder
of the potential problems.

4.1 String equality

Given:

String s1 = "abcdef";

String s2 = "abcdef";

String s3 = "abc" + "def";

String s4 = "abcdef" + "";

String s5 = s1 + "";

String t1 = "abc";

String t2 = "def";

String s6 = t1 + t2;

all strings sn are equal when compared using the method equals in the class String

that compares the contents pointed to by the reference:

if (s1.equals(s5)) // Condition evaluates to true

The string literal "abcdef" is stored only once, so strings s1, s2 and (perhaps surpris-
ingly) s3 and s4 are also equal when compared using the equality operator == that
compares the references themselves:

if (s1 == s3) // Condition evaluates to true

However, s5 and s6 are not equal (==) to s1 through s4, because their values are
created at runtime and stored separately; therefore, their references are not the same
as they are for the literals created at compile-time.

Always use equals rather than == to compare strings, unless you can explain why the
latter is needed!

24

4.2 Assignment of references

The assignment operator copies references, not the contents of an object. Given:

int[] a1 = { 1, 2, 3, 4, 5 };

int[] a2 = a1;

a1[0] = 6;

since a2 points to the same array, the value of a2[0] is also changed to 6. To copy an
array, you have to write an explicit loop and copy the elements one by one.

To copy an object pointed to by a reference, you can create a new object and pass the
old object as a parameter to a constructor:

class MyClass {

int x;

MyClass(int y) { x = y; }

MyClass(MyClass myclass) { this.x = myclass.x; }

}

class Test {

public static void main(String[] args) {

MyClass myclass1 = new MyClass(5);

MyClass myclass2 = new MyClass(myclass1);

myclass1.x = 6;

System.out.println(myclass1.x); // Prints 6

System.out.println(myclass2.x); // Prints 5

}

}

Alternatively, you can use clone as described in JAVA textbooks.

25

Chapter 5

On debugging without a debugger

Debugging is perhaps best done using a debugger such as those provided by inte-
grated development environments. Nevertheless, many programmers debug pro-
grams by inserting print statements. This section describes some of the techniques
that can be used in JAVA.

5.1 Printing number data and arrays

The methods System.out.print and System.out.println are predefined for primitive
types as well as for strings:

int i = 1;

double d = 5.2;

System.out.print(i);

System.out.println(d);

Furthermore, automatic conversion to String type is performed by the concatenation
operator +:

System.out.println("d = " + d + "and i = " + i);

The print statements can not print an entire array, so a method must be written:

public static void print(int[] a) {

for (int i = 0; i < a.length; i++)

System.out.print(a[i]);

System.out.println();

}

public static void main(String[] args) {

int[] a = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

print(a);

}

Since the number of elements of an array can be large, it is better to write the method
so that it inserts a newline after printing a fixed number of elements:

26

public static void print(int[] a) {

for (int i = 0; i < a.length; i++) {

System.out.print(a[i]);

if (i % 8 == 7) System.out.println();

}

System.out.println();

}

You can put this static method in a publicly accessible class and use it to print any
integer array. Similar methods can be written for the other primitive types.

5.2 Converting objects to strings

Within the class Object, the root class for all other classes, a method toString is de-
clared. The default implementation will not give useful information, so it is a good
idea to override it in each class that you write:

class Node {

int key;

double value;

public String toString() {

return "The value at key " + key + " is " + value;

}

}

Then, you can simply call the print statements for any object of this class and the
conversion to String is done automatically:

Node node = new Node();

...

System.out.println(node);

The predefined class java.util.Arrays constains a lot of useful (static) methods for
working with arrays, among them toString methods for arrays whose elements are
of any primitive type:

int[] a = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

System.out.println(java.util.Arrays.toString(a));

or

import java.util.Arrays;

...

System.out.println(Arrays.toString(a));

You will receive a predefined representation of the array (the elements are separated
by commas), so if you want an alternate representation (such as printing on multiple
lines) you will have to write your own print method as we did in the previous section.

27

An array of objects of any reference type can be printed by defing a single method since
any object can be converted to Object:

public static void print(Object[] a) {

for (int i = 0; i < a.length; i++)

System.out.print(a[i]);

System.out.println();

}

Node[] nodes = new Node[];

... // Create elements of the array

print(nodes);

or by calling the predefined method deepToString:

Node[] nodes = new Node[];

... // Create elements of the array

System.out.println(java.util.Arrays.deepToString(node));

5.3 Forcing a stack trace

Suppose that you have isolated a bug to a certain method but you do not know which
call of that method was responsible. You can force the interpreter to print a trace of
the call stack by inserting the line:

new Exception().printStackTrace();

within the method. It creates a new object of type Exception and then invokes the
method printStackTrace. Since the exception is not thrown, the execution of the
program proceeds with no interruption. A program can always be terminated by
calling System.exit(n) for an integer n.

5.4 Leave the debug statements in the program

Once you have found a bug, it is tempting to delete the print statements used for
debugging, but it is better not to do so because you may need them in the future.
You can comment out the statements that you don’t need, but a better solution is to
declare a global constant and then use it to turn the print statements on and off:

public class Global {

public static boolean DEBUG = false;
public static void print(int[] a) {...}

public static void print(Object[] a) {...}

}

if (Global.DEBUG) Global.print(nodes);

28

