Below is the syntax highlighted version of Euler.java
from §1.4 Arrays.
/****************************************************************************** * Compilation: javac Euler.java * Execution: java Euler n * * Tests whether there are any five positive integers that satisfy * a^5 + b^5 + c^5 + d^5 = e^5. In 1769 Euler conjectured that no such * solutions exists, but his conjecture was disproved in 1966 using * a computational approach like the one we take here. * * The program reads in an integer command-line argument n and prints * all solutions with a <= b <= c <= d <= e <= n. To speed things up by * roughly a factor of 3 on my system, we precompute an array of * fifth powers. * * % java Euler 100 * * % java Euler 150 * 27^5 + 84^5 + 110^5 + 133^5 = 144^5 // takes about 20 seconds * * ******************************************************************************/ public class Euler { public static void main(String[] args) { int n = Integer.parseInt(args[0]); // precompute i^5 for i = 0..n long[] five = new long[n+1]; for (int i = 0; i <= n; i++) five[i] = (long) i * i * i * i * i; System.out.println("Done precomputing fifth powers"); // now do exhaustive search for (int e = 1; e <= n; e++) { long e5 = five[e]; // restrict search to a <= b <= c <= d <= e for (int a = 1; a <= n; a++) { long a5 = five[a]; if (a5 + a5 + a5 + a5 > e5) break; for (int b = a; b <= n; b++) { long b5 = five[b]; if (a5 + b5 + b5 + b5 > e5) break; for (int c = b; c <= n; c++) { long c5 = five[c]; if (a5 + b5 + c5 + c5 > e5) break; for (int d = c; d <= n; d++) { long d5 = five[d]; if (a5 + b5 + c5 + d5 > e5) break; if (a5 + b5 + c5 + d5 == e5) System.out.println(a + "^5 + " + b + "^5 + " + c + "^5 + " + d + "^5 = " + e + "^5"); } } } } } } }