
The X-TOY Machine∗

February 6, 2002

Abstract

The following document supplements the COS 126 course material on X-TOY, including Lectures A1
and A2. X-TOY is an imaginary machine (created at Princeton) that is very similar to ancient computers.
We study it today because it shares the essential characteristics of modern day microprocessors. Also, it
demonstrates that simple computational models can perform useful and nontrivial calculations. In this
document we describe how to use and program the X-TOY machine. The companion document Building
the X-TOY Machine describes how to build such a machine in hardware.

∗Copyright c© 2001, Kevin Wayne. Based on lecture notes by Bob Sedgewick.

1

2 USING THE X-TOY MACHINE

Contents

1 Inside the X-TOY Machine 3
1.1 Word size . 3
1.2 Main memory . 3
1.3 Registers . 3
1.4 Program counter . 3
1.5 Input . 3
1.6 Output . 4
1.7 Running the Machine . 4
1.8 von Neumann Machine . 4
1.9 Instruction Set Architecture . 5

2 X-TOY Programming 6
2.1 Load Address . 6
2.2 Add and Subtract . 6
2.3 Load and Store . 7
2.4 Branch Statements . 8
2.5 X-TOY Idioms . 8
2.6 Functions . 9
2.7 Horner’s method. 10
2.8 Arrays . 11
2.9 Logical Operators . 13

3 The X-TOY Simulator 15
3.1 An X-TOY Simulator in C . 15
3.2 Translator . 17
3.3 Bootstrapping . 17

A Representing Integers 18
A.1 Number Systems . 18
A.2 Number Conversion . 18
A.3 Arithmetic in Other Number Systems . 19
A.4 Signed and Unsigned Integers . 20

COS 126, PRINCETON UNIVERSITY 3

1 Inside the X-TOY Machine

The X-TOY machine consists of an arithmetic logic unit, memory, registers, a program counter, switches,
lights, and a few buttons (Load, Go, Step, Look). We now describe the function of each of these compo-
nents. Then, we will describe how the use these components to write X-TOY machine language programs.

1.1 Word size

The X-TOY machine has two types of storage: main memory and registers. Each entity stores one word
of information. On the X-TOY machine, a word is a sequence of 16 bits. Typically, we interpret these
16 bits as a hexadecimal integer in the range 0000 - FFFF. Using two’s complement notation, we can also
interpret it as a decimal integer in the range−32, 768 to +32, 767. See Appendix A for a refresher on number
representations and two’s complement integers.

1.2 Main memory

The X-TOY machine has 256 words of main memory. Each memory location is labeled with a unique
memory address – by convention, we use the 256 hexadecimal integers in the range 00 - FF. Think of a
memory location as a mailbox, and a memory address as a postal address. Main memory is used to store
instructions and data.

1.3 Registers

The X-TOY machine has 16 registers, indexed from 0 - F. Registers are much like main memory: each
register stores one 16-bit word. However, registers provide a faster form of storage than main memory.
Registers are used as scratch space during computation and play the role of variables in the X-TOY language.
Register 0 is a special register whose output value is always 0.

1.4 Program counter

The program counter (pc) is an extra register that keeps track of the next instruction to be executed. It
stores 8 bits, corresponding to a hexadecimal integer in the range 00 - FF. This integer stores the memory
address of the next instruction to execute.

Main Memory

00: 01: 02: 03: 04: FC: FD: FE: FF:

B000 B101 B101 1711 8610 .A .A .A FACE CAFE ACED CEDE

Registers Program Counter

0: 1: 2: 3: F: pc

0000 0001 0010 000D .A .A .A 0002 xxxxxxxxxxxxxxx 10

Figure 1: The contents of memory, registers, and the program counter characterize the state of the X-TOY
machine, and completely determine what the machine will do.

1.5 Input

The switches and Load button are used to enter instructions and data into the machine. The switches
behave just like ordinary light switches: they are either on or off. There are 8 memory address switches to

4 USING THE X-TOY MACHINE

select one of the 28 = 256 possible memory addresses. There are also 16 data switches to select a 16 bit
integer to load into the corresponding memory location. To enter data into memory, you set the appropriate
memory and data switches, and then press the Load button. This tedious process is repeated for each
memory location. All registers and memory locations are initially 0000; the pc is initially 10.

1.6 Output

The memory address switches, lights and Look button are used to display the address and contents of one
word of main memory, as the program is being executed. To select which word of main memory to view, you
set the 8 memory address switches and press the Look button. Now, the 8 address lights display the chosen
memory address (which at the moment is the same as the address switches). The 16 data lights display the
contents of that memory location. Old programmers could often know what part of the program was being
executed by staring at the pattern of memory lights.

1.7 Running the Machine

To execute an X-TOY program, you first enter the program and data into main memory, one word at a time,
as described in Section 1.5. Then, you set the initial value of the program counter: to do this, set the memory
address switches to the desired value (typically 10). Now, you can press the Go or Step button to initiate
the computation. From this point on, the X-TOY machine executes instructions in a specific, well-defined
way. First it checks the value of the pc and fetches the contents of this memory location. Next, it increments
the pc by 1. (For example, if pc = 10, then it will get incremented to 11.) Finally, it interprets this data
as an instruction and executes it according to the rules in Section 1.9. Each instruction can modify the
contents of various registers, main memory, or even the program counter itself. It may also output integers
to the standard input and standard output. After executing the instruction, the whole fetch-execute cycle is
repeated, using the new value of the program counter to obtain the next instruction. This continues forever,
or until the machine executes a halt instruction. As with C, it is possible to write programs that go into
infinite loops. It is always possible to stop the X-TOY machine by pulling the plug.

1.8 von Neumann Machine

One of the essential characteristics of the X-TOY machine is that it stores computer programs as numbers,
and both data and programs are stored in the same main memory. In 1945, Princeton scholar John von
Neumann first popularized this stored-program model or von Neumann machine.1 It enables computers to
perform any type of computation, without requiring the user to physically alter or reconfigure the hardware.
In contrast, to program the ENIAC computer, the operator had to manually plug in cables and set switches.
This was quite tedious and time consuming. This simple but fundamental idea of the stored-program machine
has been incorporated into all modern digital computers.

Since the program and data share the same space, the machine can modify its data or the program itself
while it is executing. That is, code and data are the same, or at least they can be. The memory is interpreted
as an instruction when the pc references it, and as data when an instruction references it. The ability to
treat the program as data is crucial. Consider what happens when you want to download a program from a
remote location, e.g., download.com. It is no different from receiving email, or any other data. Compilers
and debuggers are also programs that read in other programs as input data. Treating programs as data is
not without its perils. Computer viruses are (malicious) programs that propagate by writing new programs
or modifying existing ones.

In hindsight von Neumann’s idea may seem obvious. However, it is not obvious whether a computer built
around a stored program model can be as powerful as a computer that can be rewired and reconfigured. In
fact, the ability to physically reconfigure a computer does not enable you to solve more problems, so long
as basic instruction set is rich enough (as is the case with the X-TOY machine). This is a consequence of
previous work by Alan Turing on “Turing machines.” We will study this later in the course.

1In 1945, von Neumann circulated a memo that described the stored-program model. Although it contained only his name,
historians believe that Eckert and Mauchly are also deserving of credit. However, the idea of the stored-program computer was
explicit in Alan Turing’s work on what was later to become known on universal Turing machines.

COS 126, PRINCETON UNIVERSITY 5

1.9 Instruction Set Architecture

The instruction set architecture (ISA) is the interface between the X-TOY programming langauge and the
physical hardware that will execute the program. The ISA specifies the size of main memory, number of
registers, and number of bits per instruction. It also specifies exactly which instructions the machine is
capable of performing and how each of the instruction bits is interpreted.

The X-TOY ISA. As discussed above, the X-TOY machine has 256 words of main memory, 16 registers,
and 16-bit instructions. There are 16 different instruction types; each one is designated by one of the
opcodes 0 - F. Each instruction manipulates the contents of memory, registers, or the program counter in
a completely specified manner. The 16 X-TOY instructions are organized into three categories: arithmetic-
logic, transfer between memory and registers, and flow control. The table below gives a brief summary. We
will describe them in more detail in Section 2.

Opcode Description Format Type Pseudocode
1 add 1 R[d] <- R[s] + R[t]
2 subtract 1 arithmetic R[d] <- R[s] - R[t]
3 and 1 logic R[d] <- R[s] & R[t]
4 xor 1 R[d] <- R[s] ^ R[t]
5 shift left 1 R[d] <- R[s] << R[t]
6 shift right 1 R[d] <- R[s] >> R[t]
7 load address 2 R[d] <- addr
8 load 2 R[d] <- mem[addr]
9 store 2 transfer mem[addr] <- R[d]
A load indirect 1 R[d] <- mem[R[t]]
B store indirect 1 mem[R[t]] <- R[d]
0 halt 1 halt
C branch zero 2 if (R[d] == 0) pc <- addr
D branch positive 2 flow control if (R[d] > 0) pc <- addr
E jump register 2 pc <- R[d]
F jump and link 2 R[d] <- pc; pc <- addr

Each X-TOY instruction consists of 4 hex digits (16 bits). The leading (left-most) hex digit encodes
one of the 16 opcodes. The second (from the left) hex digit refers to one of the 16 registers, which we call
the destination register and denote by d. The interpretation of the two rightmost hex digits depends on
the opcode. With Format 1 opcodes, the third and fourth hex digits are each interpreted as the index of a
register, which we call the two source registers and denote by s and t. For example, the instruction 1462
adds the contents of registers s = 6 and t = 2 and puts the result into register d = 4. With Format 2
opcodes, the third and fourth hex digits (the rightmost 8 bits) are interpreted as a memory address, which
we denote by addr. For example, the instruction 9462 stores the contents of register d = 4 into memory
location addr = 62. Note that there is no ambiguity between Format 1 and Format 2 instruction since each
opcode has a unique format.

1 4 6 2 A 4 6 2

opcode tp d tp tp s tp tp t tp opcode pp d pp pppppp addr ppppp

Format 1 Format 2

Figure 2: Parsing an X-TOY instruction.

Modern day microprocessors and ISAs. Today, there is a wide variety of ISAs used on modern day
microprocessors: IA-32 (Intel, AMD), PowerPC (IBM, Motorola), Alpha (Compaq), PA-RISC (Hewlett-
Packard), and SPARC (SUN Microsystems). These ISAs typically access millions of words of main memory,

6 USING THE X-TOY MACHINE

each of which is 32 or 64 bits wide. The number of instruction types varies greatly from half a dozen to several
hundred. The ISA is chosen in order to make it easy to build the underlying hardware and compilers, while
striving to maximize performance and minimize cost. Unfortunately, sometimes both goals are sacrificed to
maintain backward compatibility with obsolete hardware. There are always tradeoffs.

The X-TOY machine possesses all of the essential features of modern day microprocessors. However,
it is much easier to understand because it has only 16 instructions. In contrast, the IA-32 (the one used
on Intel PC’s) has more than 100 instruction types and over a dozen different instruction formats. As a
programming language, X-TOY is also much simpler than the C programming language. This makes it
easier to fully understand, but not to write code or debug. A C compiler (e.g., cc, gcc, lcc) is a program
that automatically converts C code into the ISA of the computer on which it is to be executed. You will
soon appreciate the convenience of working in a higher-level language like C.

2 X-TOY Programming

Although the X-TOY machine language contains only 16 different instruction types, it is possible to perform
a variety of interesting computations. In fact, any computation that can be done in the C programming
language on your PC (or in any programming language on any supercomputer) can also be done in X-TOY
(provided you give X-TOY enough main memory and time). This may come as quite a surprising fact; we
will justify it later in the course. Below, we describe features of the X-TOY language.

2.1 Load Address

The load address instruction (opcode 7) is the most primitive type of assignment statement in the X-TOY
language. For now, you should think of it as an instruction that loads a specified integer into a register. 2

As an example, Program 2.1 initializes register 5 to the value 002F. Recall that all values in X-TOY are
expressed in hexadecimal notation, so this corresponds to the decimal integer 47.

Program 2.1 This program stores the value 002F into
register 5.

10: 752F R[5] <- 002F
11: 0000 halt

Note that opcode 7 only allows you to assign 8 bit integers (00 - FF) to a register, even though registers
are capable of storing 16 bit integers.

2.2 Add and Subtract

The add and subtract instructions (opcodes 1 and 2) perform the conventional arithmetic operations. Remem-
ber that all operations involve 16 bit two’s complement integers, as described in Appendix A. Program 2.2
stores the values 0029 and 0078 into registers 1 and 2, respectively. Then, it computers their sum, and stores
the result in register 3.

Program 2.2 This program computes 0029 + 0078 =
00A1.

10: 7129 R[1] <- 0029
11: 7278 R[2] <- 0078
12: 1312 R[3] <- R[1] + R[2]
13: 0000 halt

2You will understand why the instruction is called load address rather than load constant when we discuss arrays.

COS 126, PRINCETON UNIVERSITY 7

Upon termination of this program, register 3 contains the value 00A1. If you computed the result 107, start
getting adjusted to working with hexadecimal integers. Analogously, Program 2.3 computes 0029 - 0078 =
FFB1. Review Appendix A if you do not understand the answer FFB1, which is the decimal equivalent of -79.

Program 2.3 This program computes 0029 - 0078 =
FFB1.

10: 7129 R[1] <- 0029
11: 7278 R[2] <- 0078
12: 2312 R[3] <- R[1] - R[2]
13: 0000 halt

The curious reader might wonder what happens if the result of the arithmetic operations is too large to
fit into a 16 bit register. Such overflow is handled by disregarding everything except the rightmost 4 hex
digits. So, the result of adding EFFF and 1005 is 0004, since EFFF + 1005 = 10004 in hex and we discard
the leading digit.

2.3 Load and Store

To transfer data between registers and main memory, we use the load (opcode 8) and store (opcode 9)
instructions. This type of operation is convenient because it is not possible to perform arithmetic operations
directly on the contents of main memory. Instead, the data must be first transferred to registers. There
are many circumstances where it is not possible to maintain all of our program’s variables simultaneously
in registers, e.g., if we need to store more than 16 quantities. We overcome the 16 register limitation by
storing variables in main memory, and transferring them back and forth to registers using the load and store
instructions.

In Program 2.4, think of memory addresses 00, 01, and 02 as storing variables a, b, and c, respectively.
The program calculates c = a + b by loading the variables a and b into temporary registers 1 and 2, then
storing the sum in register 3, and finally transferring the contents of register 3 back to memory address 02.

Program 2.4 This program adds the two integers stored
in memory locations 00 and 01, and stores the result in
memory location 02.

00: 0029 a
01: 0078 b
02: 0000 c

10: 8A00 R[A] <- mem[00] load a
11: 8B01 R[B] <- mem[01] load b
12: 1CAB R[C] <- R[A] + R[B] a + b
13: 9C02 mem[02] <- R[C] store c
14: 0000 halt

Upon termination, memory location 02 contains the value 00A1. Notice the difference between load and load
address; this is a common source of confusion. It is important to note that memory locations 00 - 02 do
not get executed; they are treated as data.

The load and store instructions are also used to access standard input and standard output. The distin-
guished memory address FF is intercepted by an X-TOY interrupt: instead of loading or storing information
in memory location FF, the data is received from the keyboard or is sent to the screen. To illustrate the
process, Program 2.5 reads two integers from standard input, and writes the sum to standard output.

8 USING THE X-TOY MACHINE

Program 2.5 This program reads in two integers from
standard input, computes their sum, and writes the result
to standard output.

10: 8AFF read R[A]
11: 8BFF read R[B]
12: 1CAB R[C] <- R[A] + R[B]
13: 9CFF write R[C]
14: 0000 halt

When the program is executed, it pauses until the user types in two integers. As usual, the integers are
specified as 4 hexadecimal digits. Then it computes their sum, and prints it to the screen.

2.4 Branch Statements

The branch if zero and branch if positive instructions (opcodes C and D) statements are useful for performing
while loops and if-else conditional statements. We will illustrate how they are used by writing a program
that multiplies two integers.

Conspicuously absent from the X-TOY instruction set is a multiply instruction. To achieve the same
effect in software, we describe and implement an algorithm to multiply two integers. The brute force way
to compute c = a * b is to set c = 0, and then add a to c, b times. This suggests having a loop that
repeats b times. We accomplish this by making a counter variable i that we initialize to b, and then
decrement it by one until it reaches 0. We use the branch if positive instruction to detect this event.

Program 2.6 This program reads in two integers from standard input,
computes their product using the brute-force algorithm, and writes the
result to standard output.
10: 8AFF read R[A]
11: 8BFF read R[B]

12: 7C00 R[C] <- 0000 c = 0
13: 7101 R[1] <- 0001 always 1

14: CA18 if (R[A] == 0) goto 18 while (a != 0) {
15: 1CCB R[C] <- R[C] + R[B] c += b
16: 2AA1 R[A] <- R[A] - R[1] a--
17: C014 goto 14 }

18: 9CFF write R[C]
19: 0000 halt

The astute reader might notice that our algorithm suffers from a serious performance flaw. The burte
force algorithm is extremely inefficient if the values are large. The loop iterates b times, and since b is a
16-bit integer, it can be as large as 32,767. This issue would be much more pronounced on a 64-bit machine
where the loop might require a mind-boggling 9,223,372,036,854,775,807 iterations! Fortunately, we can
incorporate better algorithmic ideas (see Program 2.11) to rescue this otherwise hopeless task.

2.5 X-TOY Idioms

There are several common idioms or pseudo-instructions in X-TOY that can be used for common program-
ming tasks. Many of these tricks rely on the fact that register 0 always stores the value 0000.

COS 126, PRINCETON UNIVERSITY 9

Register-To-Register Transfer. Suppose you want to make register 2 have the same value as register
1. There is no built-in instruction to do this. Relying on the fact that register 0 always contains 0000, we
can use the addition instruction to sum up R[0] and R[1] and put the result in R[2].

14: 1201 R[2] <- R[1]

Another way to achieve the same effect is with the bitwise AND instruction (opcode 3).

14: 3211 R[2] <- R[1] & R[1]

This works because ANDing an integer with itself produces the original integer. As in most machine lan-
guages, there are often many ways to achieve the same goal.

Nothing Statement (no-op). In a structured programming language like C (with for and while loops),
inserting extra code is easy. In an unstructured language like X-TOY (where there are line numbers and
goto statements), you must be careful about inserting code. A branch statement hardwires in the memory
address to jump to; if you insert code, the line numbers of your program may change. To avoid some of this
awkwardness, machine language programmers often find it convenient to fill in the program with “useless”
statements to act as placeholders. The instruction 1000 is ideal for this purpose since register 0 is always 0
anyway. 3

Goto. There is no instruction that directly changes the program counter to the addr. However, it is easy
to use the branch if zero instruction with register 0 to achieve the same effect. For example, the instruction
C0F0 changes the program counter to F0 since register 0 is always 0.

2.6 Functions

In C it is quite useful to divide a program up into smaller functions. We can do the same in X-TOY. Below
is an X-TOY program that “calls” a multiply function with two arguments and computers their product.
Since all of the variables (registers) are global, we need to agree upon a protocol for calling our function.
We’ll assume that we want to multiply the integers stored in registers A and B, and store their product in
register C. The program below works by using two branch if zero statements, one in the “main program”
starting at 10, and one in the “function” starting at F0.

10: 7A05 R[A] <- 0005
11: 7B06 R[B] <- 0006
12: C0F0 goto F0
13: 9CFF print R[C]
14: 0000 halt

F0: B101 R[1] <- 0001 R[1] always 1 in this function
F1: 8C00 R[C] <- 0 store result
F2: 120B R[2] <- R[B] i = b

do {
F3: 1CCA R[C] <- R[C] + R[A] c += a
F4: 2221 R[2] <- R[2] - R[1] i--
F5: D2F3 if (R2 > 0) goto F3 } while(i > 0)
F6: C013 goto 13

The above function is a bit unsatisfying, since it hardwires in the memory address 13 in the return statement
f6: C013. This means that we can only call the function from line 12; otherwise the function will return
to the wrong place. We write a better version that calls the multiply function twice to compute x× y × z,
once to compute x × y, then again to compute (x × y) × z. We use the jump and link and jump register
instructions that are especially designed for this purpose.

3Just so there’s no confusion, the instruction 1012 would also be a no-op because register 0 always contains 0 regardless of
how you might try to change it.

10 USING THE X-TOY MACHINE

Program 2.7 contains the complete code. Instructions 11 and 14 store the value of the pc in register R3,
before jumping to the function located at F0. This makes it possible to return back to the main program,
without hardwiring in the address into the program.

Program 2.7 This program reads in three integers x, y, and z from standard input,
and prints out x×y× z. It packages up the multiplication program into an X-TOY
function that begins at line 30.
10: 82FF read R[2] x
11: 83FF read R[3] y
12: 84FF read R[4] z

13: 1A20 R[A] <- R[2] x
14: 1B30 R[B] <- R[3] y
15: FF30 R[F] <- pc; goto 30 x * y

16: 1AC0 R[A] <- R[C] x * y
17: 1B40 R[B] <- R[4] z
18: FF30 R[F] <- pc; goto 30 (x * y) * z

19: 9CFF write R[C]
1A: 0000 halt

30: 7C00 R[C] <- 0000
31: 7101 R[1] <- 0001
32: CA36 if (R[A] == 0) goto 36
33: 1CCB R[C] <- R[C] + R[B]
34: 2AA1 R[A] <- R[A] - R[1]
35: C032 goto 32
36: EF00 goto R[F]

Now, every time the program counter is reset to F0, the old program counter is saved away in register F
for future use. Instruction F5 returns from the function by restting the program counter to the value stored
in register F. Note also, that the program counter is incremented before the instruction is executed. Thus,
during the first function call R[F] = 16, not 15.

Be very careful about which variables you are using when writing machine language functions. There is no
such thing as a “local variable.” Had we continued to use register 2 as the loop counter in the multiplication
function, this would have overwritten register 2 in the main program, which was being used to store the
quantity b.

2.7 Horner’s method.

We can use the multiplication function to evaluate polynomials: given integer coefficients an, . . . , a2, a1, a0,
and an integer x, evaluate p(x) = anx

n + · · · + a2x
2 + a1x + a0 at the integer x. Polynomial evaluation

was one raison d’être for early machines. It has many applications including studying ballistic motion and
converting an integer from its decimal representation to hexadecimal.

The brute force algorithm for polynomial evaluation is to sum up the n+ 1 terms: term i is the product
of ai and xi. To compute xi we could write a power function that multiplies x by itself i− 1 times.

Horner’s method is a clever alternative that is more efficient and easier to code. The basic idea is to
judiciously sequence the way in which terms are multiplied. We can rewrite an order 3 polynomial

p(x) = a3x
3 + a2x

2 + a1x+ a0

= (((a3)x+ a2)x+ a1)x+ a0.

COS 126, PRINCETON UNIVERSITY 11

Similarly, we can rewrite an order 5 polynomial

p(x) = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0

= (((((a5)x+ a4)x+ a3)x+ a2)x+ a1)x+ a0.

Using Horner’s method, only n multiplications are required to evaluate an order n polynomial. Moreover,
we can translate the method directly into C or X-TOY code.

Program 2.8 This program reads in a sequence of integers x, n, and an, . . . , a2, a1, a0
from standard input and prints out p(x) = anx

n + · · ·+ a2x
2 + a1x+ a0.

10: 7C00 R[C] <- 0000 result c
11: 7101 R[1] <- 0001 always 1
12: 82FF read R[2] read x
13: 83FF read R[3] read n

do {
14: 84FF read R[4] read a_i
15: 1A20 R[A] <- R[2]
16: 1BC0 R[B] <- R[C] c *= x
17: FF30 R[F] <- pc; goto 30
18: 1CC4 R[C] <- R[C] + R[4] c += a_i
19: C31C if (R[3] == 0) goto 1C
1A: 2331 R[3] <- R[3] - R[1] } while (i-- >= 0)
1B: C014 goto 14

1C: 9CFF write R[C]
1D: 0000 halt

// brute force multiply function
30: 7C00 R[C] <- 0000
31: 7101 R[1] <- 0001
32: CA36 if (R[A] == 0) goto 36
33: 1CCB R[C] <- R[C] + R[B]
34: 2AA1 R[A] <- R[A] - R[1]
35: C032 goto 32
36: EF00 goto R[F]

We can use Program 2.8 to convert a decimal integer to its hexadecimal representation. To convert 76510
to hex, we set the input x = A, n = 3, a2 = 7, a1 = 6, and a0 = 5. Since all arithmetic is performed in hex,
the program computes the hexadecimal equivalent of 7× 102 + 6× 10 + 5 = 2FD16.

2.8 Arrays

Arrays are not directly built into the X-TOY language, but it is possible to achieve the same functionality
using the load indirect and store indirect instructions. We illustrate this technique with two examples. First,
we will consider a program that reads in a sequence of integers and prints them in reverse order. Then, we
will consider a more sophisticated application of arrays that performs the classic insertion sort algorithm on
a sequence of integers.

Reverse. The following program reads from standard input a sequence of positive integers followed by
the integer 0000. It stores them in main memory, starting at address 30. We use the load address instruction
to store the address 30 into register A.4 Then, it marches through the elements in reverse order, printing
them out to standard input. We use register B to keep track of the number of elements read in. We arrange

4Now it should make sense why opcode 7 is referred to as load address.

12 USING THE X-TOY MACHINE

it so that register 6 contains the memory location of the array element that we are currently reading or
writing. To write and read an array element, we use the load indirect (opcode A) and store indirect (opcode
B) instructions, respectively.

Program 2.9 This program reads in a sequence of positive integers and prints
them out in reverse order.
10: 7101 R[1] <- 0001 R[1] always 1
11: 7A30 R[A] <- 0030 memory address of array a[]
12: 7B00 R[B] <- 0000 # elements in array = n

// read in sequence of positive integers
13: 8CFF read R[C] while (read R[C]) {
14: CC19 if (R[C] == 0) goto 19 if (c == 0) break
15: 16AB R[6] <- R[A] + R[B] a + n
16: BC06 mem[R[6]] <- R[C] a[n] = c
17: 1BB1 R[B] <- R[B] + R[1] n++
18: C013 goto 13 }

// print out results in reverse order
19: CB20 if (R[B] == 0) goto 20 while (n != 0) {
1A: 16AB R[6] <- R[A] + R[B] a + n
1B: 2661 R[6] <- R[6] - R[1] a + n - 1
1C: AC06 R[C] <- mem[R[6]] c = a[n-1]
1D: 9CFF write R[C] print c
1E: 2BB1 R[B] <- R[B] - R[1] n--
1F: C019 goto 19 }
20: 0000 halt

The program suffers from one important flaw. Since the X-TOY machine has only 256 memory locations,
it is not possible to store or reverse a list that contains too many elements. In the example above, after the
program fills up memory locations 30 - FF, it will wrap around and start writing into memory locations
0 - F. Pretty soon, it will start overwriting the lines of the original program 10 - 20. A devious user
could exploit this buffer overflow and input integers in such a way that the integers from standard input get
interpreted as instructions rather than data. Viruses can be spread by such buffer overflow attacks.

Insertion sort. The following program reads in a sequence of positive integers from standard input and
insertion sorts them. The program terminates upon reading in a nonpositive integer.

COS 126, PRINCETON UNIVERSITY 13

Program 2.10 This program reads in a sequence of positive integers and insertion
sorts them.
// R[1] always 1
10: 7101 R[1] <- 0001

// R[A] = memory address of array element 0 = a[]
11: 7A40 R[A] <- 0040

// R[B] = # elements in array = n
12: 7B00 R[B] <- 0000

// read integer from stdin into R[C] = x until "EOF"
13: 8CFF read R[C]
14: CC25 if (R[C] == 0) pc <- 25

// a[n] = x
15: 16AB R[6] <- R[A] + R[B]
16: BC06 mem[R[6]] <- R[C]

// i = n
17: 12B0 R[2] <- R[B]
18: C223 if (R[2] == 0) pc <- 23

// compare a[i] and a[i-1]
19: 16A2 R[6] <- R[A] + R[2] // a + i
1A: A706 R[7] <- mem[R[6]] // a[i]
1B: 2861 R[8] <- R[6] - 1 // a + i - 1
1C: A908 R[9] <- mem[R[8]] // a[i-1]
1D: 2379 R[3] <- R[7] - R[9] // a[i] - a[i-1]
1E: D321 if (R[3] > 0) pc <- 21
// swap
1F: B906 mem[R[6]] <- R[9]
20: B708 mem[R[8]] <- R[7]

// decrement inner loop
21: 2221 R[2]--
22: D219 if (R[2] > 0) pc <- 19

// increment outer loop
23: 1BB1 R[B] <- R[B] + R[1]
24: C013 pc <- 13

25: 0000 halt

2.9 Logical Operators

The logical operations (AND, XOR, shift left, shift right) work just like the analogous ones in C. Because
you may not have used these operators in C, we review them here.

AND and XOR. The bitwise AND and bitwise XOR functions take two 16 bit integers, and apply the
corresponding Boolean operator to each of the 16 pairs of bits. For example, if registers 1 and 2 contain the
values 00B4 and 00E3, then the instruction 3312 assigns the value 00A0 to register 3. In order to see why,
look at the binary representation of registers 1 and 2, and take the AND of each corresponding bit.

R[1] = 0000 0000 1011 0100 (binary) = 00B4 (hex)

14 USING THE X-TOY MACHINE

R[2] = 0000 0000 1110 0011 (binary) = 00E3 (hex)
R[3] = 0000 0000 1010 0000 (binary) = 00A0 (hex)

Shifting. The left shift operator shifts the bits over a certain number of places to the left, padding 0’s on
the right. For example, if register 2 has the value 00B4 and register 3 has the value 0002, then the instruction
5423 assigns the value 02D0 to register 4. To see why, look at the binary representation.

R[2] = 0000 0000 1011 0100 (binary) = 00B4 (hex) = 180 (dec)
R[3] << 2 = 0000 0010 1101 0000 (binary) = 02D0 (hex) = 720 (dec)

Note that left shifting by one bit is equivalent to multiplication by 2; left shifting by i bits is equivalent to
multiplying by 2i.

The right shift operator is similar, but the bits get shifted to the right. Leading 0’s or 1’s are padded
on the left, according to the sign bit (the leftmost bit). For example, if register 2 has the value 00B4 and
register 3 has the value 0002, then the instruction 6423 assigns the value 02D0 to register 4. To see why,
look at the binary representation.

R[2] = 0000 0000 1011 0100 (binary) = 00B4 (hex) = 180 (dec)
R[2] >> 2 = 0000 0000 0010 1101 (binary) = 002D (hex) = 45 (dec)

The value is register 2 is nonnegative so 0’s are padded on the left.
If register 2 has the value FF4C instead of 00B4, then the result of the right shifting is FFD3. In this case

R[2] = 1111 1111 0100 1100 (binary) = FF4C (hex) = -180 (dec)
R[2] >> 2 = 1111 1111 1101 0011 (binary) = FFD3 (hex) = - 45 (dec)

In this case, the value in register 2 is negative so 1’s are padded on the left.
Note that right shifting an integer by 1 bit is equivalent to dividing the integer by 2 and throwing away

the remainder. This is true regardless of the sign of the orginal integer. In general, right shifting an integer
by i bits is equivalent to dividing it by 2i and throwing away any remainder. This type of shifting is called an
arithmetic shift: it preserves the sign for two’s complement integers. In contrast, a logical right shift always
pads 0’s on the left.

Efficient multiplication. Using the bitwise operators, we provide an efficient implementation of the
multiplication function from Section 2.4. Recall, in Section 2.4, we computed c = a × b by setting c = 0,
then adding a to c, b times. This severely handicaps performance when b is large because the loop iterates
b times.

To multiply two 16-bit integers a and b, we let bi denote the ith bit of b. That is,

b = b15 × 215 + · · ·+ b2 × 22 + b1 × 2 + b0 × 20.

By distributivity, we obtain:

a× b = (a× b15 × 215) + · · ·+ (a× b2 × 22) + (a× b1 × 2) + (a× b0 × 20).

Thus, to compute a× b, it suffices to add the above 16 terms. Naively, this appears to reduce the problem of
performing one multiplication to 32 multiplication, two for each of the 16 terms. Fortunately, each of these
32 multiplications are of a very special type. First, observe that a×2i is the same as left shifting a by i bits.
Second, note that bi is either 0 or 1; thus term i is either a << i or 0. The following X-TOY function loops
16 times. In iteration i, it computes the ith term and adds it to the running total stored in register C. To
gain some perspective, recall the standard grade school algorithm for multiplying two decimal integers. The
bitwise procedure we just described is really just the grade school algorithm applied to binary integers.

COS 126, PRINCETON UNIVERSITY 15

Program 2.11 This program reads in two integers from standard output and writes
their product to standard output. It uses the grade school (binary) multiplication
algorithm.
10: 8AFF read R[A]
11: 8BFF read R[B]
12: FF30 R[F] <- pc; goto 30
13: 9CFF write R[C]
14: 0000

30: 7101 R[1] <- 0001
31: 7210 R[2] <- 0010 i = 16
32: 7C00 R[C] <- 0000 result

33: C23B if (R[2] == 0) goto 3B while (i > 0) {
34: 2221 R[2]-- i--
35: 53A2 R[3] <- R[A] << R[2] a * 2^i
36: 64B2 R[4] <- R[B] >> R[2]
37: 3441 R[4] <- R[4] & R[1] b_i = ith bit of b

38: C43A if (R[4] == 0) goto 3A
39: 1CC3 R[C] += R[3] c += b_i * a * 2^i

3A: C033 goto 33 }

3B: EF00 goto R[F] return

3 The X-TOY Simulator

Suppose we are interested in designing a new machine or microprocessor. We could test it out by building a
prototype machine and run various programs on it. A different approach would be to write a program on an
existing machine that would simulate the behavior of the new machine. This has two main advantages. First
it would be easy to extend the simulator to add extra flexibility, e.g., add debugging tools or experiment
with a different ISA. Second, it is much cheaper than building a prototype for a new machine.

Designing a simulator can have other benefits. Suppose our X-TOY machine becomes obsolete by the
more powerful NOTATOY machine. But, we have written thousands of programs in the X-TOY language
and are reluctant to rewrite them for NOTATOY. Instead, we could build a simulator for the X-TOY machine
on NOTATOY. Now, we can run all of our existing programs on NOTATOY by running them on our X-TOY
simulator. As you might suspect, this extra layer of simulation will slow down our code somewhat. Many
ancient programs are currently still running on today’s computers, under several layers of simulation. For
example, it is still possible to run the Apple IIe game Lode Runner under Microsoft Windows NT.

3.1 An X-TOY Simulator in C

Figure 3.1 gives a C program that reads in an X-TOY program and simulates the behavior of the X-TOY
machine.5 Remarkably, it fits on one page. The C program uses arrays to store the registers and main
memory. It also stores the pc. The C program reads in the X-TOY program and alters the appropriate
register, memory, and pc contents in exactly the same way that the X-TOY machine would modify its
registers, memory, and pc. Any program written for the X-TOY machine could ultimately be used on the

5For simplicity, we have ignored dealing with standard input and standard output, although these changes would be fairly
straightforward. We also note that the C language type short is not required to be a 16-bit two’s complement integer, although
on many systems it is.

16 USING THE X-TOY MACHINE

X-TOY simulator, and any program written for the X-TOY simulator could be used on the X-TOY machine,
were it to be built. A Java simulator with a graphical interface is available from the course web page.

Program 3.1 Simulating the X-TOY machine in C. We use arrays R[] and mem[] to
store the registers and main memory. We assume that short is a two’s complement
16-bit integer and unsigned char is an 8-bit integer.

int main(void) {
short R[16] = {0}; // 16 16-bit registers
short mem[256] = {0}; // 256 16-bit memory locations
unsigned char pc = 0x10; // 8-bit program counter
int inst; // current instruction
int op, addr, d, s, t;

// read X-TOY program from a file???
while(scanf("%2hX: %4hX", &addr, &inst) != EOF)

mem[addr] = inst;

// fetch-execute cycle
do {

inst = mem[pc++]; // fetch next instruction
op = (inst >> 12) & 15; // get opcode (bits 12 - 15)
d = (inst >> 8) & 15; // get d (bits 8 - 11)
s = (inst >> 4) & 15; // get s (bits 4 - 7)
t = (inst >> 0) & 15; // get t (bits 0 - 3)
addr = (inst >> 0) & 255; // get addr (bits 0 - 7)

switch (op) {
case 0: break; // halt
case 1: R[d] = R[s] + R[t]; break; // add
case 2: R[d] = R[s] - R[t]; break; // subtract
case 3: R[d] = R[s] & R[t]; break; // bitwise and
case 4: R[d] = R[s] ^ R[t]; break; // bitwise xor
case 5: R[d] = R[s] << R[t]; break; // shift left
case 6: R[d] = R[s] >> R[t]; break; // shift right
case 7: R[d] = addr; break; // load address
case 8: R[d] = mem[addr]; break; // load
case 9: mem[addr] = R[d]; break; // store
case 10: R[d] = mem[R[t]]; break; // load indirect
case 11: mem[R[t]] = R[d]; break; // store indirect
case 12: if (R[d] == 0) pc = addr; break; // branch if zero
case 13: if (R[d] > 0) pc = addr; break; // branch if positive
case 14: pc = R[d]; break; // jump register
case 15: R[d] = pc; pc = addr; break; // jump and link

}
R[0] = 0; // register 0 always outputs 0

} while (op != 0);

return 0;
}

COS 126, PRINCETON UNIVERSITY 17

3.2 Translator

It is possible to translate any particular TOY program into a C program. That is, given an X-TOY program
(e.g., insertion sort), write a corresponding C program that does the same thing. This is analogous to
translating a book from French into Spanish. Note that simulation is not the same as translation. A
simulator mimics the behavior of the original machine exactly line-by-line, whereas a translator needs to
generate code that produces the same output given the same input. In principle, it is also possible, but
somewhat tedious, to translate a C program into X-TOY.

3.3 Bootstrapping

We now consider a mind-bending idea with great practical significance. Since it is always possible to translate
a C program into X-TOY, let’s translate our X-TOY simulator (written in C) into a program written in the
X-TOY language! That is, we create an X-TOY program that simulates the X-TOY machine itself. Now,
we could modify the X-TOY simulator, e.g., to add debugging tools, or to simulate variants of the X-TOY
machine. The resulting X-TOY simulator program is “more powerful” than the original X-TOY machine.
This idea is called bootstrapping, where once we build one machine, we can use it to simulate “more powerful”
machines. This fundamental idea is now used in the design of all new computers.6

6According to Apple’s web site “Seymour Cray, founder of Cray Research and father of several generations of supercomputers,
heard that Apple had bought a Cray to simulate computer design. Cray was amused, remarking, Funny, I am using an Apple
to simulate the Cray-3.”

18 USING THE X-TOY MACHINE

A Representing Integers

In this appendix, we review how to represent integers in binary, decimal, and hexadecimal. We also review
how to convert between bases and do arithmetic. Finally, we describe how to represent negative integers
using “two’s complement notation.”

A.1 Number Systems

There are many ways to represent integers: the number of days in the month of October can be represented
as 31 in decimal, 11111 in binary, 1F in hexadecimal, or XXXI in Roman Numerals. It is important to
remember than an integer is an integer, no matter whether it is represented in decimal or with Roman
Numerals. We are most familiar with performing arithmetic with the decimal (base 10) number system.
This number system has been universally adopted in large part because we have 10 fingers. Clocks are
based on the sexagecimal (base 60) number system, mainly because 60 has lots of divisors. Computers are
based on the binary (base 2) number system because each wire can be in one of two states (on or off). The
hexadecimal (base 16) number system is often used in machine languages, including X-TOY, as a shorthand
for binary. Base 16 is useful because 16 is a power of 2 with a reasonable number of digits.

A sequence of digits x = xn xn−1 . . . x1 x0 in base b represents the integer

x = xn b
n + xn−1 b

n−1 + . . . + x1 b
1 + x0 b

0. (1)

This representation is called positional notation. The xi are the positional digits, and each digit is required
to be an integer between 0 and b − 1. In binary, the two digits (also referred to as bits) are 0 and 1; in
decimal, the ten digits are 0 through 9; in hexadecimal, the sixteen digits are 0 through 9 and the letters
A through F. Every positive integer can be expressed using positional notation, and the representation is
unique modulo an arbitrary number of the leading 0’s. As an example the number of days in a leap year is:

366 (decimal) = 3× 102 + 6× 101 + 6× 100

= 1× 28 + 0× 27 + 1× 26 + 1× 25 + 0× 24 + 1× 23 + 1× 22 + 1× 21 + 0× 20

= 101101110 (binary)
= 1× 162 + 6× 161 + 14× 160

= 16E (hexadecimal).

The following table gives the binary, decimal, and hexadecimal representations of the first 48 integers.

Bin Dec Hex Bin Dec Hex Bin Dec Hex
0 0 0 10000 16 10 100000 32 20
1 1 1 10001 17 11 100001 33 21

10 2 2 10010 18 12 100010 34 22
11 3 3 10011 19 13 100011 35 23
100 4 4 10100 20 14 100100 36 24
101 5 5 10101 21 15 100101 37 25
110 6 6 10110 22 16 100110 38 26
111 7 7 10111 23 17 100111 39 27

1000 8 8 11000 24 18 101000 40 28
1001 9 9 11001 25 19 101001 41 29
1010 10 A 11010 26 1A 101010 42 2A
1011 11 B 11011 27 1B 101011 43 2B
1100 12 C 11100 38 1C 101100 44 2C
1101 13 D 11101 29 1D 101101 45 2D
1110 14 E 11110 30 1E 101110 46 2E
1111 15 F 11111 31 1F 101111 47 2F

A.2 Number Conversion

In this section we describe a few techniques for converting among various representations, including binary,
decimal, and hexadecimal.

COS 126, PRINCETON UNIVERSITY 19

Converting to Decimal. It is straightforward to convert an integer represented in base b to an integer
represented in decimal: use Formula (1), performing ordinary decimal arithmetic. As an example, to convert
the binary number 101101110 to decimal, compute:

1011011102 = 1× 28 + 0× 27 + 1× 26 + 1× 25 + 0× 24 + 1× 23 + 1× 22 + 1× 21 + 0× 20

= 256 + 64 + 32 + 8 + 4 + 2
= 36610.

Converting from Decimal. It is slightly more difficult to convert an integer represented in decimal to
one in base b because we are accustomed to performing arithmetic in base 10. One way to do the conversion
is to apply Formula (1), using base b arithmetic. An alternate method that uses only decimal arithmetic is
to repeatedly divide by the base b, and read the remainder upwards, as in Figure 3. This is usually the best
way to do it by hand.

000

001

002

005

011

022

045

091

183

3662

2 0

2 1

2 1

2 1

2 0

2 1

2 1

2 0

1

000

001

022

36616

16 14

16 6

1

366 (decimal)
= 101101110 (binary)
= 16E (hex)

Figure 3: To convert from base b to decimal, repeatedly divide by b and read the remainders upwards.

Converting between Binary and Hexadecimal. We describe a fast way to convert from the binary
to hexadecimal representation of an integer. In principle, we could convert from binary to decimal, and then
from decimal to hexadecimal. The following approach is simpler. To convert from binary to hexadecimal:
first, group the digits 4 at a time starting from the right; then convert each group to a single hexadecimal
digit, padding 0’s to the very last group if necessary.

111010111001110001 (binary) = 0011︸︷︷︸
3

1010︸︷︷︸
A

1110︸︷︷︸
E

0111︸︷︷︸
7

0001︸︷︷︸
1

= 3AE71 (hex).

To convert from hexadecimal to binary: convert each hexadecimal digit individually into its corresponding
4 digit binary number, removing any leading 0’s.

9F03 (hex) = 9︸︷︷︸
1001

F︸︷︷︸
1111

0︸︷︷︸
0000

3︸︷︷︸
0011

= 1001111100000011 (binary).

These simple procedures work because one base is a power of the other. Likewise, it would be easy to convert
between the base 125 and base 5 representations.

A.3 Arithmetic in Other Number Systems

Addition. In grade school you learned how to add two decimal integers: add the two least significant
digits (rightmost digits); if the sum is more than 10, then carry a 1 and right down the sum modulo 10.
Repeat with the next digit, but this time include the carry bit in the addition. The same procedure can be
generalized to base b by replacing the 10 with the base b. For example, if you are working in base 16 and

20 USING THE X-TOY MACHINE

the two summand digits are 7 and E, then you should carry a 1 and write down a 6 because 7 +E = 1616.
Below, we compute 456710 + 36610 = 493310 in binary (left), decimal (middle) and hexadecimal (right).

1 1 1 1 1 1 1 1

1 0 0 0 1 1 1 0 1 0 1 1 1
+ 0 0 0 0 1 0 1 1 0 1 1 1 0

1 0 0 1 1 0 1 0 0 0 1 0 1

1 1

4 5 6 7
+ 3 6 6

4 9 3 3

1 1

1 1 D 7
+ 1 6 E

1 3 4 5

Multiplication. One compelling reason to use positional number systems is to facilitate multiplication.
Multiplying two Roman Numerals is awkward and slow. In contrast, the grade school algorithm for multiply-
ing two decimal integers is straightforward and reasonably efficient. As with addition, it easily generalizes to
handle base b integers. All intermediate single-digit multiplications and additions are done in base b. Below,
we multiply the decimal integers 4,567 and 366, and then the same integers represented in hex.

4 5 6 7
× 3 6 6
2 7 4 0 2

2 7 4 0 2
1 3 7 0 1
1 6 7 1 5 2 2

1 1 D 7
× 1 6 E

F 9 C 2
6 B 0 A

1 1 D 7
1 9 8 1 6 2

A.4 Signed and Unsigned Integers

On a machine with 16-bit words, there are 216 = 65, 536 possible integers that can be stored in one word
of memory. By interpreting the 16 bits as a binary number, we obtain an unsigned integer in the range 0 –
65,535. Instead, we can interpret the leading bit as the sign of the number, using two’s complement notation.
This allows us to interpret the 16 bits as a signed integer in the range −32, 768 to +32, 767, as described in
the table below. As with binary integers, it is often convenient to express 16-bit two’s complement integers
using hexadecimal notation.

Binary Hex Decimal
0000 0000 0000 0000 0000 0
0000 0000 0000 0001 0001 +1
0000 0000 0000 0010 0002 +2
0000 0000 0000 0011 0003 +3

...
0111 1111 1111 1110 7FFE +32,766
0111 1111 1111 1111 7FFF +32,767
1000 0000 0000 0000 8000 -32,768
1000 0000 0000 0001 8001 -32,767
1000 0000 0000 0010 8002 -32,766

...
1111 1111 1111 1101 FFFD -3
1111 1111 1111 1110 FFFE -2
1111 1111 1111 1111 FFFF -1

Negating a Two’s Complement Integer. To negate a two’s complement integer, first complement all
of the bits, then add 1. By complement, we mean replace all of the 0’s with 1’s, and the 1’s with 0’s. The
table below illustrates a few examples.

COS 126, PRINCETON UNIVERSITY 21

Integer Complement Increment
+3 0000 0000 0000 0011 1111 1111 1111 1100 1111 1111 1111 1101 -3
-3 1111 1111 1111 1101 0000 0000 0000 0010 0000 0000 0010 0011 +3
+40 0000 0000 0010 1000 1111 1111 1101 0111 1111 1111 1101 1000 -40
+366 0000 0001 0110 1110 1111 1110 1001 0001 1111 1110 1001 0010 -366
-40 1111 1111 1101 1000 0000 0000 0010 0111 0000 0000 0010 1000 +40

0 0000 0000 0000 0000 1111 1111 1111 1111 0000 0000 0000 0000 0
-32,768 1000 0000 0000 0000 0111 1111 1111 1111 1000 0000 0000 0000 -32,768

Number Conversions. We describe how to convert between the decimal and two’s complement rep-
resentations of an integer. To convert the 16-bit two’s complement integer FE92 into decimal, we start by
writing down its binary representation: 1111 1110 1001 0010. We recognize it as a negative integer since
the most significant bit is 1. Then, we negate it (flip bits and add 1) to obtain: 0000 0001 0110 1110. As
in Section A.2, we can convert 101101110 (binary) to 366 (decimal). After putting back in the negative sign,
we obtain the final answer of -366 (decimal).

To covert from the decimal integer -366 to its 16-bit two’s complement representation, we can apply the
above steps in reverse. First we convert 366 (decimal) into 101101110 (binary), as in Figure 3. Next, we
negate it (flip bits and add one) to obtain 1111 1110 1001 0010. It is important that we fill in all 16 bits.
If desired, we can convert this to hexadecimal: FE92.

Adding Two’s Complement Integers. Adding two’s complement integers is straightforward: add the
numbers as if they were unsigned integers, ignoring any overflow. Below we compute 456710 + (−36610) =
420110 using 16-bit two’s complement integers. Note that the second binary integer represents a negative
integer using two’s complement notation.

1 1

4 5 6 7
+ -3 6 6

4 2 0 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 1 1 1 0 1 0 1 1 1
+ 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0

0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1

In the example above, we carry a one into the most significant bit (leftmost bit), and we carry a one out,
which we subsequently discard. Despite the apparent overflow, we are left with the correct result. There is
one situation where this will produce an incorrect answer: if we do not carry a one into the most significant
bit, but do carry a one out. Below we compute −32, 76610 + (−36610) = −33, 13210 using 16-bit two’s
complement integers. At first, we might be surprised to see that the result of adding two negative integers
is a positive integer (to see this quickly, look at the most significant bit of the result). This occurs because
there is carry out of the most significant digit, but no carry in to it. In hindsight, we should not be surprised
because the true answer -33,132 cannot be represented as a 16-bit two’s complement integer.

-3 2 7 6 6
+ -3 6 6

-3 3 1 3 2

1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

+ 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0
0 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0

