Below is the syntax highlighted version of BigRational.java
from §9.2 Floating Point.
/****************************************************************************** * Compilation: javac BigRational.java * Execution: java BigRational * * Immutable ADT for arbitrarily large Rational numbers. * * Invariants * ---------- * - gcd(num, den) = 1, i.e., rational number is in reduced form * - den >= 1, i.e., the denominator is always a positive integer * - 0/1 is the unique representation of zero * * % java BigRational * 5/6 * 1 * 1/120000000 * 1073741789/12 * 1 * 841/961 * -1/3 * 0 * true * Exception in thread "main" java.lang.ArithmeticException: Denominator is zero * ******************************************************************************/ import java.math.BigDecimal; import java.math.BigInteger; import java.math.RoundingMode; import java.util.Objects; public class BigRational implements Comparable<BigRational> { public final static BigRational ZERO = new BigRational(0); public final static BigRational ONE = new BigRational(1); public final static BigRational TWO = new BigRational(2); private BigInteger num; // the numerator private BigInteger den; // the denominator (always a positive integer) // create and initialize a new BigRational object public BigRational(int numerator, int denominator) { this(BigInteger.valueOf(numerator), BigInteger.valueOf(denominator)); } // create and initialize a new BigRational object public BigRational(int numerator) { this(numerator, 1); } // create and initialize a new BigRational object from a string, e.g., "-343/1273" public BigRational(String s) { String[] tokens = s.split("/"); if (tokens.length == 2) init(new BigInteger(tokens[0]), new BigInteger(tokens[1])); else if (tokens.length == 1) init(new BigInteger(tokens[0]), BigInteger.ONE); else throw new IllegalArgumentException("For input string: \"" + s + "\""); } // create and initialize a new BigRational object public BigRational(BigInteger numerator, BigInteger denominator) { init(numerator, denominator); } private void init(BigInteger numerator, BigInteger denominator) { // deal with x / 0 if (denominator.equals(BigInteger.ZERO)) { throw new ArithmeticException("Denominator is zero"); } // reduce fraction (if num = 0, will always yield den = 0) BigInteger g = numerator.gcd(denominator); num = numerator.divide(g); den = denominator.divide(g); // to ensure invariant that denominator is positive if (den.compareTo(BigInteger.ZERO) < 0) { den = den.negate(); num = num.negate(); } } // return string representation of (this) public String toString() { if (den.equals(BigInteger.ONE)) return num + ""; else return num + "/" + den; } // return { -1, 0, + 1 } if a < b, a = b, or a > b public int compareTo(BigRational b) { BigRational a = this; return a.num.multiply(b.den).compareTo(a.den.multiply(b.num)); } // is this BigRational negative, zero, or positive? public boolean isZero() { return num.signum() == 0; } public boolean isPositive() { return num.signum() > 0; } public boolean isNegative() { return num.signum() < 0; } // is this Rational object equal to y? public boolean equals(Object y) { if (y == this) return true; if (y == null) return false; if (y.getClass() != this.getClass()) return false; BigRational b = (BigRational) y; return compareTo(b) == 0; } // hashCode consistent with equals() and compareTo() public int hashCode() { return Objects.hash(num, den); } // return a * b public BigRational times(BigRational b) { BigRational a = this; return new BigRational(a.num.multiply(b.num), a.den.multiply(b.den)); } // return a + b public BigRational plus(BigRational b) { BigRational a = this; BigInteger numerator = a.num.multiply(b.den).add(b.num.multiply(a.den)); BigInteger denominator = a.den.multiply(b.den); return new BigRational(numerator, denominator); } // return -a public BigRational negate() { return new BigRational(num.negate(), den); } // return |a| public BigRational abs() { if (isNegative()) return negate(); else return this; } // return a - b public BigRational minus(BigRational b) { BigRational a = this; return a.plus(b.negate()); } // return 1 / a public BigRational reciprocal() { return new BigRational(den, num); } // return a / b public BigRational divides(BigRational b) { BigRational a = this; return a.times(b.reciprocal()); } // return double reprentation (within given precision) public double doubleValue() { int SCALE = 32; // number of digits after the decimal place BigDecimal numerator = new BigDecimal(num); BigDecimal denominator = new BigDecimal(den); BigDecimal quotient = numerator.divide(denominator, SCALE, RoundingMode.HALF_EVEN); return quotient.doubleValue(); } // test client public static void main(String[] args) { BigRational x, y, z; // 1/2 + 1/3 = 5/6 x = new BigRational(1, 2); y = new BigRational(1, 3); z = x.plus(y); StdOut.println(z); // 8/9 + 1/9 = 1 x = new BigRational(8, 9); y = new BigRational(1, 9); z = x.plus(y); StdOut.println(z); // 1/200000000 + 1/300000000 = 1/120000000 x = new BigRational(1, 200000000); y = new BigRational(1, 300000000); z = x.plus(y); StdOut.println(z); // 1073741789/20 + 1073741789/30 = 1073741789/12 x = new BigRational(1073741789, 20); y = new BigRational(1073741789, 30); z = x.plus(y); StdOut.println(z); // 4/17 * 17/4 = 1 x = new BigRational(4, 17); y = new BigRational(17, 4); z = x.times(y); StdOut.println(z); // 3037141/3247033 * 3037547/3246599 = 841/961 x = new BigRational(3037141, 3247033); y = new BigRational(3037547, 3246599); z = x.times(y); StdOut.println(z); // 1/6 - -4/-8 = -1/3 x = new BigRational( 1, 6); y = new BigRational(-4, -8); z = x.minus(y); StdOut.println(z); // 0 x = new BigRational(0, 5); StdOut.println(x); StdOut.println(x.plus(x).compareTo(x) == 0); /// StdOut.println(x.reciprocal()); // divide-by-zero // -1/200000000 + 1/300000000 = 1/120000000 x = new BigRational(-1, 200000000); y = new BigRational(1, 300000000); z = x.plus(y); StdOut.println(z); } }