Below is the syntax highlighted version of AdaptiveQuadrature.java
from §9.3 Symbolic Methods.
/****************************************************************************** * Compilation: javac AdaptiveQuadrature.java * Execution: java AdaptiveQuadrature a b * * Numerically integrate the function in the interval [a, b] using * the extrapolated Simpson's rule in an adaptive recursive algorithm. * * See https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/moler/quad.pdf * * % java AdaptiveQuadrature -3 3 // true answer = 0.9973002040... * 0.9973002039366737 * 0.9973002036280225 * * % java AdaptiveQuadrature 0 10000000 // true answer = 1/2 * 1.9947114020071635 * 0.500000121928651 * * * Note that even with 1 million subintervals, the trapezoid rule * gets the integral of f(x) = exp(-x^2) / sqrt(2 pi) from 0 to 10,000,000 * completely wrong. * In contrast, the adaptive quadrature rule is accurate to 8 significant * digits. In this example, both methods evaluate f() at roughly 1 million * points. * * Note: many function calls can be saved by computing f(a), f(b), and f(c) * only once per recursive call (instead of twice) and adding extra * arguments to adapative() and passing the already computed values * that will get reused in the next recursive call. * ******************************************************************************/ public class AdaptiveQuadrature { private final static double EPSILON = 1E-6; /*************************************************************************** * Standard normal distribution density function. * Replace with any sufficiently smooth function. ***************************************************************************/ static double f(double x) { return Math.exp(- x * x / 2) / Math.sqrt(2 * Math.PI); } // trapezoid rule static double trapezoid(double a, double b, int n) { double h = (b - a) / n; double sum = 0.5 * h * (f(a) + f(b)); for (int k = 1; k < n; k++) sum = sum + h * f(a + h*k); return sum; } // adaptive quadrature public static double adaptive(double a, double b) { double h = b - a; double c = (a + b) / 2.0; double d = (a + c) / 2.0; double e = (b + c) / 2.0; double Q1 = h/6 * (f(a) + 4*f(c) + f(b)); double Q2 = h/12 * (f(a) + 4*f(d) + 2*f(c) + 4*f(e) + f(b)); if (Math.abs(Q2 - Q1) <= EPSILON) return Q2 + (Q2 - Q1) / 15; else return adaptive(a, c) + adaptive(c, b); } // sample client program public static void main(String[] args) { double a = Double.parseDouble(args[0]); double b = Double.parseDouble(args[1]); StdOut.println(trapezoid(a, b, 1000000)); StdOut.println(adaptive(a, b)); } }