Below is the syntax highlighted version of TrapezoidalRule.java
from §9.3 Symbolic Methods.
/****************************************************************************** * Compilation: javac TrapezoidalRule.java * Execution: java TrapezoidalRule a b * * Numerically integrate the function in the interval [a, b]. * * % java TrapezoidalRule -3 3 * 0.9973002031388447 // true answer = 0.9973002040... * * Observation: this says that 99.7% of time a standard normal random * variable is within 3 standard deviation of its mean. * * % java TrapezoidalRule 0 100000 * 1.9949108930964732 // true answer = 1/2 * * Caveat: this is not the best way to integrate the normal density * function. See what happens if you make b very big. * ******************************************************************************/ public class TrapezoidalRule { /********************************************************************** * Standard normal distribution density function. * Replace with any sufficiently smooth function. **********************************************************************/ static double f(double x) { return Math.exp(- x * x / 2) / Math.sqrt(2 * Math.PI); } /********************************************************************** * Integrate f from a to b using the trapezoidal rule. * Increase N for more precision. **********************************************************************/ static double integrate(double a, double b, int N) { double h = (b - a) / N; // step size double sum = 0.5 * (f(a) + f(b)); // area for (int i = 1; i < N; i++) { double x = a + h * i; sum = sum + f(x); } return sum * h; } // sample client program public static void main(String[] args) { double a = Double.parseDouble(args[0]); double b = Double.parseDouble(args[1]); StdOut.println(integrate(a, b, 1000)); } }