
Introduction
to

Programming in Java
An Interdisciplinary Approach

Robert Sedgewick
and

Kevin Wayne

Princeton University

O N L I N E P R E V I E W

!"#$%&'(')!"*+,,,- ./01/23,,,0425,67

Publisher Greg Tobin
Executive Editor Michael Hirsch
Associate Editor Lindsey Triebel
Associate Managing Editor Jeffrey Holcomb
Senior Designer Joyce Cosentino Wells
Digital Assets Manager Marianne Groth
Senior Media Producer Bethany Tidd
Senior Marketing Manager Michelle Brown
Marketing Assistant Sarah Milmore
Senior Author Support/
 Technology Specialist Joe Vetere
Senior Manufacturing Buyer Carol Melville
Copyeditor Genevieve d’Entremont
Composition and Illustrations Robert Sedgewick and Kevin Wayne

Cover Image: © Robert Sedgewick and Kevin Wayne

Page 353 © 2006 C. Herscovici, Brussels / Artists Rights Society (ARS), New York Banque d’ Images, ADAGP / Art
Resource, NY

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

The interior of this book was composed in Adobe InDesign.

Library of Congress Cataloging-in-Publication Data

Sedgewick, Robert, 1946-
 Introduction to programming in Java : an interdisciplinary approach / by Robert Sedgewick and Kevin Wayne.
 p. cm.
 Includes index.
 ISBN 978-0-321-49805-2 (alk. paper)
 1. Java (Computer program language) 2. Computer programming. I. Wayne, Kevin Daniel, 1971- II. Title.
 QA76.73.J38S413 2007
 005.13’3--dc22
 2007020235

Copyright © 2008 Pearson Education, Inc. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of
America. For information on obtaining permission for use of material in this work, please submit a written request
to Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900, Boston, MA 02116,
fax (617) 671-3447, or online at http://www.pearsoned.com/legal/permissions.htm.

ISBN-13: 978-0-321-49805-2
ISBN-10: 0-321-49805-4

1 2 3 4 5 6 7 8 9 10—CRW—11 10 09 08 07

!"#$%&'(')!"*+,,,0 ./01/23,,,0425,67

v

Preface

THE BASIS FOR EDUCATION IN THE last millennium was “reading, writing, and arith-
metic;” now it is reading, writing, and computing. Learning to program is an

essential part of the education of every student in the sciences and engineering.
Beyond direct applications, it is the first step in understanding the nature of com-
puter science’s undeniable impact on the modern world. This book aims to teach
programming to those who need or want to learn it, in a scientific context.

Our primary goal is to empower students by supplying the experience and
basic tools necessary to use computation effectively. Our approach is to teach stu-
dents that writing a program is a natural, satisfying, and creative experience (not
an onerous task reserved for experts). We progressively introduce essential con-
cepts, embrace classic applications from applied mathematics and the sciences to
illustrate the concepts, and provide opportunities for students to write programs
to solve engaging problems.

We use the Java programming language for all of the programs in this book—
we refer to Java after programming in the title to emphasize the idea that the book
is about fundamental concepts in programming, not Java per se. This book teaches
basic skills for computational problem-solving that are applicable in many modern
computing environments, and is a self-contained treatment intended for people
with no previous experience in programming.

This book is an interdisciplinary approach to the traditional CS1 curriculum,
where we highlight the role of computing in other disciplines, from materials sci-
ence to genomics to astrophysics to network systems. This approach emphasizes
for students the essential idea that mathematics, science, engineering, and com-
puting are intertwined in the modern world. While it is a CS1 textbook designed
for any first-year college student interested in mathematics, science, or engineer-
ing (including computer science), the book also can be used for self-study or as a
supplement in a course that integrates programming with another field.

!"#$%&'(')!"*+,,,5 ./01/23,,,0425,67

vi

Coverage The book is organized around four stages of learning to program: ba-
sic elements, functions, object-oriented programming, and algorithms (with data
structures). We provide the basic information readers need to build confidence in
writing programs at each level before moving to the next level. An essential feature
of our approach is to use example programs that solve intriguing problems, sup-
ported with exercises ranging from self-study drills to challenging problems that
call for creative solutions.

Basic elements include variables, assignment statements, built-in types of
data, flow of control (conditionals and loops), arrays, and input/output, including
graphics and sound.

Functions and modules are the student’s first exposure to modular program-
ming. We build upon familiarity with mathematical functions to introduce Java
static methods, and then consider the implications of programming with func-
tions, including libraries of functions and recursion. We stress the fundamental
idea of dividing a program into components that can be independently debugged,
maintained, and reused.

Object-oriented programming is our introduction to data abstraction. We em-
phasize the concepts of a data type (a set of values and a set of operations on them)
and an object (an entity that holds a data-type value) and their implementation
using Java’s class mechanism. We teach students how to use, create, and design data
types. Modularity, encapsulation, and other modern programming paradigms are
the central concepts of this stage.

Algorithms and data structures combine these modern programming para-
digms with classic methods of organizing and processing data that remain effec-
tive for modern applications. We provide an introduction to classical algorithms
for sorting and searching as well as fundamental data structures (including stacks,
queues, and symbol tables) and their application, emphasizing the use of the scien-
tific method to understand performance characteristics of implementations.

Applications in science and engineering are a key feature of the text. We moti-
vate each programming concept that we address by examining its impact on spe-
cific applications. We draw examples from applied mathematics, the physical and
biological sciences, and computer science itself, and include simulation of physical
systems, numerical methods, data visualization, sound synthesis, image process-
ing, financial simulation, and information technology. Specific examples include a
treatment in the first chapter of Markov chains for web page ranks and case stud-
ies that address the percolation problem, N-body simulation, and the small-world

!"#$%&'(')!"*+,,,8 ./01/23,,,0425,67

vii

phenomenon. These applications are an integral part of the text. They engage stu-
dents in the material, illustrate the importance of the programming concepts, and
provide persuasive evidence of the critical role played by computation in modern
science and engineering.

Our primary goal is to teach the specific mechanisms and skills that are need-
ed to develop effective solutions to any programming problem. We work with com-
plete Java programs and encourage readers to use them. We focus on programming
by individuals, not library programming or programming in the large (which we
treat briefly in an appendix).

Use in the Curriculum This book is intended for a first-year college course
aimed at teaching novices to program in the context of scientific applications.
Taught from this book, prospective majors in any area of science and engineering
will learn to program in a familiar context. Students completing a course based on
this book will be well-prepared to apply their skills in later courses in science and
engineering and to recognize when further education in computer science might
be beneficial.

Prospective computer science majors, in particular, can benefit from learning
to program in the context of scientific applications. A computer scientist needs the
same basic background in the scientific method and the same exposure to the role
of computation in science as does a biologist, an engineer, or a physicist.

Indeed, our interdisciplinary approach enables colleges and universities to
teach prospective computer science majors and prospective majors in other fields
of science and engineering in the same course. We cover the material prescribed by
CS1, but our focus on applications brings life to the concepts and motivates stu-
dents to learn them. Our interdisciplinary approach exposes students to problems
in many different disciplines, helping them to more wisely choose a major.

Whatever the specific mechanism, the use of this book is best positioned early
in the curriculum. First, this positioning allows us to leverage familiar material
in high school mathematics and science. Second, students who learn to program
early in their college curriculum will then be able to use computers more effectively
when moving on to courses in their specialty. Like reading and writing, program-
ming is certain to be an essential skill for any scientist or engineer. Students who
have grasped the concepts in this book will continually develop that skill through a
lifetime, reaping the benefits of exploiting computation to solve or to better under-
stand the problems and projects that arise in their chosen field.

!"#$%&'(')!"*+,,,1 ./01/23,,,0425,67

viii

Prerequisites This book is meant to be suitable for typical science and engi-
neering students in their first year of college. That is, we do not expect preparation
beyond what is typically required for other entry-level science and mathematics
courses.

Mathematical maturity is important. While we do not dwell on mathematical ma-
terial, we do refer to the mathematics curriculum that students have taken in high
school, including algebra, geometry, and trigonometry. Most students in our target
audience (those intending to major in the sciences and engineering) automatically
meet these requirements. Indeed, we take advantage of their familiarity with the
basic curriculum to introduce basic programming concepts.

Scientific curiosity is also an essential ingredient. Science and engineering students
bring with them a sense of fascination in the ability of scientific inquiry to help ex-
plain what goes on in nature. We leverage this predilection with examples of simple
programs that speak volumes about the natural world. We do not assume any spe-
cific knowledge beyond that provided by typical high school courses in mathemat-
ics, physics, biology, or chemistry.

Programming experience is not necessary, but also is not harmful. Teaching pro-
gramming is our primary goal, so we assume no prior programming experience.
But writing a program to solve a new problem is a challenging intellectual task, so
students who have written numerous programs in high school can benefit from
taking an introductory programming course based on this book (just as students
who have written numerous essays in high school can benefit from an introductory
writing course in college). The book can support teaching students with varying
backgrounds because the applications appeal to both novices and experts alike.

Experience using a computer is also not necessary, but also is not at all a problem.
College students use computers regularly, to communicate with friends and rela-
tives, listen to music, process photos, and many other activities. The realization that
they can harness the power of their own computer in interesting and important
ways is an exciting and lasting lesson.

In summary, virtually all students in science and engineering are prepared to take a
course based on this book as a part of their first-semester curriculum.

!"#$%&'(')!"*+,,,9 ./01/23,,,0425,67

ix

Goals What can instructors of upper-level courses in science and engineering
expect of students who have completed a course based on this book?

We cover the CS1 curriculum, but anyone who has taught an introductory
programming course knows that expectations of instructors in later courses are
typically high: each instructor expects all students to be familiar with the computing
environment and approach that he or she wants to use. A physics professor might
expect some students to design a program over the weekend to run a simulation; an
engineering professor might expect other students to be using a particular package
to numerically solve differential equations; or a computer science professor might
expect knowledge of the details of a particular programming environment. Is it
realistic to meet such diverse expectations? Should there be a different introductory
course for each set of students? Colleges and universities have been wrestling with
such questions since computers came into widespread use in the latter part of the
20th century. Our answer to them is found in this common introductory treatment
of programming, which is analogous to commonly accepted introductory courses
in mathematics, physics, biology, and chemistry. An Introduction to Programming
strives to provide the basic preparation needed by all students in science and en-
gineering, while sending the clear message that there is much more to understand
about computer science than programming. Instructors teaching students who
have studied from this book can expect that they have the knowledge and experi-
ence necessary to enable them to adapt to new computational environments and to
effectively exploit computers in diverse applications.

What can students who have completed a course based on this book expect to ac-
complish in later courses?

Our message is that programming is not difficult to learn and that harness-
ing the power of the computer is rewarding. Students who master the material in
this book are prepared to address computational challenges wherever they might
appear later in their careers. They learn that modern programming environments,
such as the one provided by Java, help open the door to any computational prob-
lem they might encounter later, and they gain the confidence to learn, evaluate,
and use other computational tools. Students interested in computer science will be
well-prepared to pursue that interest; students in science and engineering will be
ready to integrate computation into their studies.

!"#$%&'(')!"*+,,,3 ./01/23,,,0425,67

x

Booksite An extensive amount of information that supplements this text may
be found on the web at

http://www.cs.princeton.edu/IntroProgramming

For economy, we refer to this site as the booksite throughout. It contains material
for instructors, students, and casual readers of the book. We briefly describe this
material here, though, as all web users know, it is best surveyed by browsing. With a
few exceptions to support testing, the material is all publicly available.

One of the most important implications of the booksite is that it empow-
ers instructors and students to use their own computers to teach and learn the
material. Anyone with a computer and a browser can begin learning to program
by following a few instructions on the booksite. The process is no more difficult
than downloading a media player or a song. As with any website, our booksite is
continually evolving. It is an essential resource for everyone who owns this book. In
particular, the supplemental materials are critical to our goal of making computer
science an integral component of the education of all scientists and engineers.

For instructors, the booksite contains information about teaching. This in-
formation is primarily organized around a teaching style that we have developed
over the past decade, where we offer two lectures per week to a large audience,
supplemented by two class sessions per week where students meet in small groups
with instructors or teaching assistants. The booksite has presentation slides for the
lectures, which set the tone.

For teaching assistants, the booksite contains detailed problem sets and pro-
gramming projects, which are based on exercises from the book but contain much
more detail. Each programming assignment is intended to teach a relevant concept
in the context of an interesting application while presenting an inviting and engag-
ing challenge to each student. The progression of assignments embodies our ap-
proach to teaching programming. The booksite fully specifies all the assignments
and provides detailed, structured information to help students complete them in
the allotted time, including descriptions of suggested approaches and outlines for
what should be taught in class sessions.

For students, the booksite contains quick access to much of the material in the
book, including source code, plus extra material to encourage self-learning. Solu-
tions are provided for many of the book’s exercises, including complete program
code and test data. There is a wealth of information associated with programming
assignments, including suggested approaches, checklists, FAQs, and test data.

!"#$%&'(')!"*+,,,:2 ./01/23,,,0425,67

xi

For casual readers (including instructors, teaching assistants, and students!),
the booksite is a resource for accessing all manner of extra information associated
with the book’s content. All of the booksite content provides web links and other
routes to pursue more information about the topic under consideration. There is
far more information accessible than any individual could fully digest, but our goal
is to provide enough to whet any reader’s appetite for more information about the
book’s content.

Acknowledgements This project has been under development since 1992, so
far too many people have contributed to its success for us to acknowledge them
all here. Special thanks are due to Anne Rogers for helping to start the ball rolling;
to Dave Hanson, Andrew Appel, and Chris van Wyk, for their patience in explain-
ing data abstraction; and to Lisa Worthington, for being the first to truly relish
the challenge of teaching this material to first-year students. We also gratefully ac-
knowledge the efforts of /dev/126 (the summer students who have contributed
so much of the content); the faculty, graduate students, and teaching staff who
have dedicated themselves to teaching this material over the past 15 years here at
Princeton; and the thousands of undergraduates who have dedicated themselves to
learning it.

 Robert Sedgewick
 Madeira, Portugal

 Kevin Wayne
 San Francisco, California

 July, 2007

!"#$%&'(')!"*+,,,:: ./01/23,,,0425,67

!"#$%&'(')!"*+,,,:0 ./01/23,,,0425,67

xiii

Contents

Preface . v

Elements of Programming 3
1.1 Your First Program 4
1.2 Built-in Types of Data 14
1.3 Conditionals and Loops 46
1.4 Arrays 86
1.5 Input and Output 120
1.6 Case Study: Random Web Surfer 162

Functions and Modules 183
2.1 Static Methods 184
2.2 Libraries and Clients 218
2.3 Recursion 254
2.4 Case Study: Percolation 286

Object-Oriented Programming 315
3.1 Data Types 316
3.2 Creating Data Types 370
3.3 Designing Data Types 416
3.4 Case Study: N-body Simulation 456

Algorithms and Data Structures 471
4.1 Performance 472
4.2 Sorting and Searching 510
4.3 Stacks and Queues 550
4.4 Symbol Tables 608
4.5 Case Study: Small World 650

Context. 695

Index 699

!"#$%&'(')!"*+,,,:. ./01/23,,,0425,67

Chapter One

!"#$%&'(')!"*+,,,0 ./01/23,,,0425,67

3

OUR GOAL IN THIS CHAPTER IS to convince you that writing a program is easier than
writing a piece of text, such as a paragraph or essay. Writing prose is difficult:

we spend many years in school to learn how to do it. By contrast, just a few building
blocks suffice to enable us to write programs that can help solve all sorts of fascinat-
ing, but otherwise unapproachable, problems. In this chapter, we take you through
these building blocks, get you started on programming in Java, and study a variety
of interesting programs. You will be able to express yourself (by writing programs)
within just a few weeks. Like the ability to write prose, the ability to program is a
lifetime skill that you can continually refine well into the future.

In this book, you will learn the Java programming language. This task will be
much easier for you than, for example, learning a foreign language. Indeed, pro-
gramming languages are characterized by no more than a few dozen vocabulary
words and rules of grammar. Much of the material that we cover in this book could
be expressed in the C or C++ languages, or any of several other modern program-
ming languages. But we describe everything specifically in Java so that you can get
started creating and running programs right away. On the one hand, we will focus
on learning to program, as opposed to learning details about Java. On the other
hand, part of the challenge of programming is knowing which details are relevant
in a given situation. Java is widely used, so learning to program in this language will
enable you to write programs on many computers (your own, for example). Also,
learning to program in Java will make it easy for you learn other languages, includ-
ing lower-level languages such as C and specialized languages such as MATLAB.

1.1 Your First Program 4
1.2 Built-in Types of Data 14
1.3 Conditionals and Loops. 46
1.4 Arrays 86
1.5 Input and Output 120
1.6 Case Study: Random Web Surfer. . . 162

Elements of Programming

!"#$%&'(')!"*+,,,. ./01/23,,,0425,67

Elements of Programming

1.1 Your First Program

IN THIS SECTION, OUR PLAN IS to lead you into the world of Java programming by tak-
ing you through the basic steps required to get a simple program running. The Java
system is a collection of applications, not unlike many of the other applications
that you are accustomed to using (such
as your word processor, email program,
and internet browser). As with any ap-
plication, you need to be sure that Java
is properly installed on your computer. It
comes preloaded on many computers, or
you can download it easily. You also need a text editor and a terminal application.
Your first task is to find the instructions for installing such a Java programming
environment on your computer by visiting

http://www.cs.princeton.edu/IntroProgramming

We refer to this site as the booksite. It contains an extensive amount of supplemen-
tary information about the material in this book for your reference and use. You
will find it useful to have your browser open to this site while programming.

Programming in Java To introduce you to developing Java programs, we
break the process down into three steps. To program in Java, you need to:

Create a program by typing it into a file named, say, MyCode.java.
Compile it by typing javac MyCode.java in a terminal window.
Run (or execute) it by typing java MyCode in the terminal window.

In the first step, you start with a blank screen and end with a sequence of typed
characters on the screen, just as when you write an email message or a paper. Pro-
grammers use the term code to refer to program text and the term coding to refer
to the act of creating and editing the code. In the second step, you use a system ap-
plication that compiles your program (translates it into a form more suitable for the
computer) and puts the result in a file named MyCode.class. In the third step, you
transfer control of the computer from the system to your program (which returns
control back to the system when finished). Many systems have several different
ways to create, compile, and execute programs. We choose the sequence described
here because it is the simplest to describe and use for simple programs.

1.1.1 Hello, World 6
1.1.2 Using a command-line argument . . 8

Programs in this section

!"#$%&'(')!"*+,,,- ./01/23,,,0425,67

51.1 Your First Program

Creating a program. A Java program is nothing more than a sequence of charac-
ters, like a paragraph or a poem, stored in a file with a .java extension. To create
one, therefore, you need only define that sequence of characters, in the same way
as you do for email or any other computer application. You can use any text editor
for this task, or you can use one of the more sophisticated program development
environments described on the booksite. Such environments are overkill for the
sorts of programs we consider in this book, but they are not difficult to use, have
many useful features, and are widely used by professionals.

Compiling a program. At first, it might seem that Java is designed to be best un-
derstood by the computer. To the contrary, the language is designed to be best un-
derstood by the programmer (that’s you). The computer’s language is far more
primitive than Java. A compiler is an application that translates a program from the
Java language to a language more suitable for executing on the computer. The com-
piler takes a file with a .java extension as input (your program) and produces a
file with the same name but with a .class extension (the computer-language ver-
sion). To use your Java compiler, type in a terminal window the javac command
followed by the file name of the program you want to compile.

Executing a program. Once you compile the program, you can run it. This is the
exciting part, where your program takes control of your computer (within the con-
straints of what the Java system allows). It is perhaps more accurate to say that your
computer follows your instructions. It is even more accurate to say that a part of
the Java system known as the Java Virtual Machine (the JVM, for short) directs your
computer to follow your instructions. To use the JVM to execute your program,
type the java command followed by the program name in a terminal window.

your program
(a text file)

computer-language
version of your program

type javac HelloWorld.java
to compile your program

use any text editor to
create your program

type java HelloWorld
to execute your program

output

Developing a Java program

editor compiler JVMHelloWorld.java HelloWorld.class "Hello, World"

!"#$%&'(')!"*+,,,5 ./01/23,,,0425,67

6 Elements of Programming

% javac HelloWorld.java
% java HelloWorld
Hello, World

PROGRAM 1.1.1 IS AN EXAMPLE OF a complete Java program. Its name is HelloWorld,
which means that its code resides in a file named HelloWorld.java (by convention
in Java). The program’s sole action is to print a message back to the terminal win-
dow. For continuity, we will use some standard Java terms to describe the program,
but we will not define them until later in the book: PROGRAM 1.1.1 consists of a single
class named HelloWorld that has a single method named main(). This method uses
two other methods named System.out.print() and System.out.println() to
do the job. (When referring to a method in the text, we use () after the name to
distinguish it from other kinds of names.) Until SECTION 2.1, where we learn about
classes that define multiple methods, all of our classes will have this same structure.
For the time being, you can think of “class” as meaning “program.”

The first line of a method specifies its name and other information; the rest is
a sequence of statements enclosed in braces and each followed by a semicolon. For
the time being, you can think of “programming” as meaning “specifying a class

Program 1.1.1 Hello, World

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.print("Hello, World");
 System.out.println();
 }
}

This code is a Java program that accomplishes a simple task. It is traditionally a beginner’s first
program. The box below shows what happens when you compile and execute the program. The
terminal application gives a command prompt (% in this book) and executes the commands
that you type (javac and then java in the example below). The result in this case is that the
program prints a message in the terminal window (the third line).

!"#$%&'(')!"*+,,,8 ./01/23,,,0425,67

71.1 Your First Program

name and a sequence of statements for its main() method.” In the next two sec-
tions, you will learn many different kinds of statements that you can use to make
programs. For the moment, we will just use statements for printing to the terminal
like the ones in HelloWorld.

When you type java followed by a
class name in your terminal application, the
system calls the main() method that you
defined in that class, and executes its state-
ments in order, one by one. Thus, typing
java HelloWorld causes the system to call
on the main() method in PROGRAM 1.1.1 and
execute its two statements. The first state-
ment calls on System.out.print() to print
in the terminal window the message be-
tween the quotation marks, and the second
statement calls on System.out.println()
to terminate the line.

Since the 1970s, it has been a tradition that a beginning programmer’s first
program should print "Hello, World". So, you should type the code in PROGRAM
1.1.1 into a file, compile it, and execute it. By doing so, you will be following in the
footsteps of countless others who have learned how to program. Also, you will be
checking that you have a usable editor and terminal application. At first, accom-
plishing the task of printing something out in a terminal window might not seem
very interesting; upon reflection, however, you will see that one of the most basic
functions that we need from a program is its ability to tell us what it is doing.

For the time being, all our program code will be just like PROGRAM 1.1.1, ex-
cept with a different sequence of statements in main(). Thus, you do not need to
start with a blank page to write a program. Instead, you can

Copy HelloWorld.java into a new file having a new program name of
your choice, followed by .java.
Replace HelloWorld on the first line with the new program name.
Replace the System.out.print() and System.out.println() statements
with a different sequence of statements (each ending with a semicolon).

Your program is characterized by its sequence of statements and its name. Each
Java program must reside in a file whose name matches the one after the word
class on the first line, and it also must have a .java extension.

main() method

body

name

statements

Anatomy of a program

 text file named HelloWorld.java

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.print("Hello, World");
 System.out.println();
 }
}

!"#$%&'(')!"*+,,,1 ./01/23,,,0425,67

8 Elements of Programming

% javac UseArgument.java
% java UseArgument Alice
Hi, Alice. How are you?
% java UseArgument Bob
Hi, Bob. How are you?

Errors. It is easy to blur the distinction among editing, compiling, and executing
programs. You should keep them separate in your mind when you are learning to
program, to better understand the effects of the errors that inevitably arise. You
can find several examples of errors in the Q&A at the end of this section. You can
fix or avoid most errors by carefully examining the program as you create it, the
same way you fix spelling and grammatical errors when you compose an email
message. Some errors, known as compile-time errors, are caught when you compile
the program, because they prevent the compiler from doing the translation. Other
errors, known as run-time errors, do not show up until you execute the program.
In general, errors in programs, also commonly known as bugs, are the bane of a
programmer’s existence: the error messages can be confusing or misleading, and
the source of the error can be very hard to find. One of the first skills that you will
learn is to identify errors; you will also learn to be sufficiently careful when coding,
to avoid making many of them in the first place.

Program 1.1.2 Using a command-line argument

public class UseArgument
{
 public static void main(String[] args)
 {
 System.out.print("Hi, ");
 System.out.print(args[0]);
 System.out.println(". How are you?");
 }
}

This program shows the way in which we can control the actions of our programs: by providing
an argument on the command line. Doing so allows us to tailor the behavior of our programs.

!"#$%&'(')!"*+,,,9 ./01/23,,,0425,67

91.1 Your First Program

Input and Output Typically, we want to provide input to our programs: data
that they can process to produce a result. The simplest way to provide input data is
illustrated in UseArgument (PROGRAM 1.1.2). Whenever UseArgument is executed,
it reads the command-line argument that you type after the program name and
prints it back out to the terminal as part of the message. The result of executing
this program depends on what we type after the program name. After compiling
the program once, we can run it for different command-line arguments and get
different printed results. We will discuss in more detail the mechanism that we use
to pass arguments to our programs later, in SECTION 2.1. In the meantime, you can
use args[0] within your program’s body to represent the string that you type on
the command line when it is executed, just as in UseArgu-
ment.

Again, accomplishing the task of getting a program
to write back out what we type in to it may not seem in-
teresting at first, but upon reflection you will realize that
another basic function of a program is its ability to re-
spond to basic information from the user to control what
the program does. The simple model that UseArgument
represents will suffice to allow us to consider Java’s basic
programming mechanism and to address all sorts of inter-
esting computational problems.

Stepping back, we can see that UseArgument does neither more nor less than
implement a function that maps a string of characters (the argument) into another
string of characters (the message printed back to the terminal). When using it, we
might think of our Java program as a black box that converts our input string to
some output string. This model is attractive because it is not only simple but also
sufficiently general to allow completion, in principle, of any computational task.
For example, the Java compiler itself is nothing more than a program that takes
one string of characters as input (a .java file) and produces another string of
characters as output (the corresponding .class file). Later, we will be able to write
programs that accomplish a variety of interesting tasks (though we stop short of
programs as complicated as a compiler). For the moment, we live with various lim-
itations on the size and type of the input and output to our programs; in SECTION
1.5, we will see how to incorporate more sophisticated mechanisms for program
input and output. In particular, we can work with arbitrarily long input and output
strings and other types of data such as sound and pictures.

input stringAlice

Hi, Alice. How are you?

black box

output string

A bird’s-eye view of a Java program

!"#$%&'(')!"*+,,,3 ./01/23,,,0425,67

10 Elements of Programming

Q&A

Q. Why Java?

A. The programs that we are writing are very similar to their counterparts in sev-
eral other languages, so our choice of language is not crucial. We use Java because
it is widely available, embraces a full set of modern abstractions, and has a variety
of automatic checks for mistakes in programs, so it is suitable for learning to pro-
gram. There is no perfect language, and you certainly will be programming in other
languages in the future.

Q. Do I really have to type in the programs in the book to try them out? I believe
that you ran them and that they produce the indicated output.

A. Everyone should type in and run HelloWorld. Your understanding will be
greatly magnified if you also run UseArgument, try it on various inputs, and modify
it to test different ideas of your own. To save some typing, you can find all of the
code in this book (and much more) on the booksite. This site also has information
about installing and running Java on your computer, answers to selected exercises,
web links, and other extra information that you may find useful or interesting.

Q. What is the meaning of the words public, static and void?

A. These keywords specify certain properties of main() that you will learn about
later in the book. For the moment, we just include these keywords in the code (be-
cause they are required) but do not refer to them in the text.

Q. What is the meaning of the //, /*, and */ character sequences in the code?

A. They denote comments, which are ignored by the compiler. A comment is either
text in between /* and */ or at the end of a line after //. As with most online code,
the code on the booksite is liberally annotated with comments that explain what it
does; we use fewer comments in code in this book because the accompanying text
and figures provide the explanation.

Q. What are Java’s rules regarding tabs, spaces, and newline characters?

A. Such characters are known as whitespace characters. Java compilers consider
all whitespace in program text to be equivalent. For example, we could write Hel-

!"#$%&'(')!"*+,,,:2 ./01/23,,,0425,67

111.1 Your First Program

loWorld as follows:

public class HelloWorld { public static void main (String []
args) { System.out.print("Hello, World") ; System.out.
println() ;} }

But we do normally adhere to spacing and indenting conventions when we write
Java programs, just as we always indent paragraphs and lines consistently when we
write prose or poetry.

Q. What are the rules regarding quotation marks?

A. Material inside quotation marks is an exception to the rule defined in the pre-
vious question: things within quotes are taken literally so that you can precisely
specify what gets printed. If you put any number of successive spaces within the
quotes, you get that number of spaces in the output. If you accidentally omit a
quotation mark, the compiler may get very confused, because it needs that mark to
distinguish between characters in the string and other parts of the program.

Q. What happens when you omit a brace or misspell one of the words, like public
or static or void or main?

A. It depends upon precisely what you do. Such errors are called syntax errors and
are usually caught by the compiler. For example, if you make a program Bad that is
exactly the same as HelloWorld except that you omit the line containing the first
left brace (and change the program name from HelloWorld to Bad), you get the
following helpful message:

% javac Bad.java
Bad.java:2: '{' expected
 public static void main(String[] args)
 ^
1 error

From this message, you might correctly surmise that you need to insert a left brace.
But the compiler may not be able to tell you exactly what mistake you made, so the
error message may be hard to understand. For example, if you omit the second left
brace instead of the first one, you get the following messages:

!"#$%&'(')!"*+,,,:: ./01/23,,,0425,67

12 Elements of Programming

% javac Bad.java
Bad.java:4: ';' expected
 System.out.print("Hello, World");
 ^
Bad.java:7: 'class' or 'interface' expected
}
^
Bad.java:8: 'class' or 'interface' expected
^
3 errors

One way to get used to such messages is to intentionally introduce mistakes into a
simple program and then see what happens. Whatever the error message says, you
should treat the compiler as a friend, for it is just trying to tell you that something
is wrong with your program.

Q. Can a program use more than one command-line argument?

A. Yes, you can use many arguments, though we normally use just a few. Note that
the count starts at 0, so you refer to the first argument as args[0], the second one
as args[1], the third one as args[2], and so forth.

Q. What Java methods are available for me to use?

A. There are literally thousands of them. We introduce them to you in a deliberate

fashion (starting in the next section) to avoid overwhelming you with choices.

Q. When I ran UseArgument, I got a strange error message. What’s the problem?

A. Most likely, you forgot to include a command-line argument:

% java UseArgument
Hi, Exception in thread “main”
java.lang.ArrayIndexOutOfBoundsException: 0
 at UseArgument.main(UseArgument.java:6)

The JVM is complaining that you ran the program but did not type an argument as
promised. You will learn more details about array indices in SECTION 1.4. Remember
this error message: you are likely to see it again. Even experienced programmers
forget to type arguments on occasion.

!"#$%&'(')!"*+,,,:0 ./01/23,,,0425,67

131.1 Your First Program

Exercises

1.1.1 Write a program that prints the Hello, World message 10 times.

1.1.2 Describe what happens if you omit the following in HelloWorld.java:
a. public
b. static
c. void
d. args

1.1.3 Describe what happens if you misspell (by, say, omitting the second letter)
the following in HelloWorld.java:

a. public
b. static
c. void
d. args

1.1.4 Describe what happens if you try to execute UseArgument with each of the
following command lines:

a. java UseArgument java
b. java UseArgument @!&^%
c. java UseArgument 1234
d. java UseArgument.java Bob
e. java UseArgument Alice Bob

1.1.5 Modify UseArgument.java to make a program UseThree.java that takes
three names and prints out a proper sentence with the names in the reverse of the
order given, so that, for example, java UseThree Alice Bob Carol gives Hi
Carol, Bob, and Alice.

!"#$%&'(')!"*+,,,:. ./01/23,,,0425,67

Elements of Programming

1.2 Built-in Types of Data

WHEN PROGRAMMING IN JAVA, YOU MUST always be aware of the type of data that your
program is processing. The programs in SECTION 1.1 process strings of characters,
many of the programs in this section process numbers, and we consider numer-
ous other types later in the book. Under-
standing the distinctions among them is
so important that we formally define the
idea: a data type is a set of values and a set
of operations defined on those values. You
are familiar with various types of num-
bers, such as integers and real numbers,
and with operations defined on them,
such as addition and multiplication. In mathematics, we are accustomed to think-
ing of sets of numbers as being infinite; in computer programs we have to work
with a finite number of possibilities. Each operation that we perform is well-de-
fined only for the finite set of values in an associated data type.

There are eight primitive types of data in Java, mostly for different kinds of
numbers. Of the eight primitive types, we most often use these: int for integers;
double for real numbers; and boolean for true-false values. There are other types
of data available in Java libraries: for example, the programs in SECTION 1.1 use the
type String for strings of characters. Java treats the String type differently from
other types because its usage for input and output is essential. Accordingly, it shares
some characteristics of the primitive types: for example, some of its operations are
built in to the Java language. For clarity, we refer to primitive types and String
collectively as built-in types. For the time being, we concentrate on programs that
are based on computing with built-in types. Later, you will learn about Java library
data types and building your own data types. Indeed, programming in Java is often
centered on building data types, as you shall see in CHAPTER 3.

After defining basic terms, we consider several sample programs and code
fragments that illustrate the use of different types of data. These code fragments
do not do much real computing, but you will soon see similar code in longer pro-
grams. Understanding data types (values and operations on them) is an essential
step in beginning to program. It sets the stage for us to begin working with more
intricate programs in the next section. Every program that you write will use code
like the tiny fragments shown in this section.

1.2.1 String concatenation example . . . 20
1.2.2 Integer multiplication and division 22
1.2.3 Quadratic formula 24
1.2.4 Leap year 27
1.2.5 Casting to get a random integer . . 33

Programs in this section

!"#$%&'(')!"*+,,,:- ./01/23,,,0425,67

151.2 Built-in Types of Data

type set of values common operators sample literal values

int integers + - * / % 99 -12 2147483647

double floating-point numbers + - * / 3.14 -2.5 6.022e23

boolean boolean values && || ! true false

char characters 'A' '1' '%' '\n'

String sequences of characters + "AB" Hello" "2.5"

Basic built-in data types

Definitions To talk about data types, we need to introduce some terminology.
To do so, we start with the following code fragment:

int a, b, c;
a = 1234;
b = 99;
c = a + b;

The first line is a declaration that declares the names of three variables to be the
identifiers a, b, and c and their type to be int. The next three lines are assignment
statements that change the values of the variables, using the literals 1234 and 99,
and the expression a + b, with the end result that c has the value 1333.

Identifiers. We use identifiers to name variables (and many other things) in Java.
An identifier is a sequence of letters, digits, _, and $, the first of which is not a digit.
The sequences of characters abc, Ab$, abc123, and a_b are all legal Java identifiers,
but Ab*, 1abc, and a+b are not. Identifiers are case-sensitive, so Ab, ab, and AB are all
different names. You cannot use certain reserved words—such as public, static,
int, double, and so forth—to name variables.

Literals. A literal is a source-code representation of a data-type value. We use
strings of digits like 1234 or 99 to define int literal values, and add a decimal point
as in 3.14159 or 2.71828 to define double literal values. To specify a boolean val-
ue, we use the keywords true or false, and to specify a String, we use a sequence
of characters enclosed in quotes, such as "Hello, World". We will consider other
kinds of literals as we consider each data type in more detail.

Variables. A variable is a name that we use to refer to a data-type value. We use
variables to keep track of changing values as a computation unfolds. For example,

!"#$%&'(')!"*+,,,:5 ./01/23,,,0425,67

16 Elements of Programming

we use the variable n in many programs to count things. We create a variable in a
declaration that specifies its type and gives it a name. We compute with it by using
the name in an expression that uses operations defined for its type. Each variable
always stores one of the permissible data-type values.

Declaration statements. A declaration statement associates a variable name with
a type at compile time. Java requires us to use declarations to specify the names
and types of variables. By doing so, we are being explicit about any computation
that we are specifying. Java is said to be a strongly-typed language, because the Java
compiler can check for consistency at compile time (for example, it does not permit
us to add a String to a double). This situation is precisely analogous to making
sure that quantities have the proper units in a sci-
entific application (for example, it does not make
sense to add a quantity measured in inches to an-
other measured in pounds). Declarations can ap-
pear anywhere before a variable is first used—most
often, we put them at the point of first use.

Assignment statements. An assignment statement
associates a data-type value with a variable. When
we write c = a + b in Java, we are not expressing
mathematical equality, but are instead expressing an action: set the value of the
variable c to be the value of a plus the value of b. It is true that c is mathematically
equal to a + b immediately after the assignment statement has been executed, but
the point of the statement is to change the value of c (if necessary). The left-hand
side of an assignment statement must be a single variable; the right-hand side can
be an arbitrary expression that produces values of the type. For example, we can say
discriminant = b*b - 4*a*c in Java, but we cannot say a + b = b + a or 1 = a.
In short, the meaning of = is decidedly not the same as in mathematical equations. For
example, a = b is certainly not the same as b = a, and while the value of c is the
value of a plus the value of b after c = a + b has been executed, that may cease to
be the case if subsequent statements change the values of any of the variables.

Initialization. In a simple declaration, the initial value of the variable is unde-
fined. For economy, we can combine a declaration with an assignment statement to
provide an initial value for the variable.

declaration statement

Using a primitive data type

literalvariable name int a, b;
a = 1234 ;
b = 99;
int c = a + b;

combined declaration
and assignment statement

assignment
statement

!"#$%&'(')!"*+,,,:8 ./01/23,,,0425,67

171.2 Built-in Types of Data

Tracing changes in variable values. As a final check on your understanding of
the purpose of assignment statements, convince yourself that the following code
exchanges the values of a and b (assume that a and b are int variables):

int t = a;
a = b;
b = t;

To do so, use a time-honored method of examining pro-
gram behavior: study a table of the variable values after
each statement (such a table is known as a trace).

Expressions. An expression is a literal, a variable, or a
sequence of operations on literals and/or variables that
produces a value. For primitive types, expressions look just like mathematical for-
mulas, which are based on familiar symbols or operators that specify data-type
operations to be performed on one or more operands. Each operand can be any
expression. Most of the operators that we use are binary operators that take exactly
two operands, such as x + 1 or y / 2. An expression that is enclosed in parentheses
is another expression with the same value. For example, we can write 4 * (x - 3) or

4*x - 12 on the right-hand side of an assignment statement
and the compiler will understand what we mean.

Precedence. Such expressions are shorthand for specifying a
sequence of computations: in what order should they be per-
formed? Java has natural and well-defined precedence rules
(see the booksite) that fully specify this order. For arithmetic
operations, multiplication and division are performed before

addition and subtraction, so that a-b*c and a-(b*c) represent the same sequence
of operations. When arithmetic operators have the same precedence, the order is
determined by left-associativity, so that a-b-c and (a-b)-c represent the same se-
quence of operations. You can use parentheses to override the rules, so you should
not need to worry about the details of precedence for most of the programs that
you write. (Some of the programs that you read might depend subtly on prece-
dence rules, but we avoid such programs in this book.)

Converting strings to primitive values for command-line arguments. Java
provides the library methods that we need to convert the strings that we type as

Your first trace

int a, b;
a = 1234;
b = 99;
int t = a;
a = b;
b = t;

a
undefined

1234
1234
1234
99
99

b
undefined

undefined

99
99
99
1234

t

1234
1234
1234

Anatomy of an expression

operator

 4 * (x - 3)

operands
(and expressions)

!"#$%&'(')!"*+,,,:1 ./01/23,,,0425,67

18 Elements of Programming

command-line arguments into numeric values for primitive types. We use the
Java library methods Integer.parseInt() and Double.parseDouble() for
this purpose. For example, typing Integer.parseInt("123") in program text
yields the literal value 123 (typing 123 has the same effect) and the code Integer.
parseInt(args[0]) produces the same result as the literal value typed as a string
on the command line. You will see several examples of this usage in the programs
in this section.

Converting primitive type values to strings for output. As mentioned at the be-
ginning of this section, the Java built-in String type obeys special rules. One of
these special rules is that you can easily convert any type of data to a String: when-
ever we use the + operator with a String as one of its operands, Java automatically
converts the other to a String, producing as a result the String formed from the
characters of the first operand followed by the characters of the second operand.
For example, the result of these two code fragments

String a = "1234"; String a = "1234";
String b = "99"; int b = 99;
String c = a + b; String c = a + b;

are both the same: they assign to c the value "123499". We use this automatic
conversion liberally to form String values for System.out.print() and System.
out.println() for output. For example, we can write statements like this one:

System.out.println(a + " + " + b + " = " + c);

If a, b, and c are int variables with the values 1234, 99, and 1333, respectively, then
this statement prints out the string 1234 + 99 = 1333.

WITH THESE MECHANISMS, OUR VIEW OF each Java program as a black box that takes
string arguments and produces string results is still valid, but we can now interpret
those strings as numbers and use them as the basis for meaningful computation.
Next, we consider these details for the basic built-in types that you will use most
often (strings, integers, floating-point numbers, and true–false values), along with
sample code illustrating their use. To understand how to use a data type, you need
to know not just its defined set of values, but also which operations you can per-
form, the language mechanism for invoking the operations, and the conventions
for specifying literal values.

!"#$%&'(')!"*+,,,:9 ./01/23,,,0425,67

191.2 Built-in Types of Data

Characters and Strings A char is an alphanumeric character or symbol, like
the ones that you type. There are 216 different possible character values, but we
usually restrict attention to the ones that represent letters,
numbers, symbols, and whitespace characters such as tab
and newline. Literals for char are characters enclosed in
single quotes; for example, 'a' represents the letter a. For
tab, newline, backslash, single quote and double quote, we
use the special escape sequences '\t', '\n', '\\', '\'',
and '\"', respectively. The characters are encoded as
16-bit integers using an encoding scheme known as Uni-
code, and there are escape sequences for specifying special
characters not found on your keyboard (see the booksite).
We usually do not perform any operations directly on characters other than assign-
ing values to variables.

A String is a sequence of characters. A literal String is a sequence of charac-
ters within double quotes, such as "Hello, World". The String data type is not a
primitive type, but Java sometimes treats it like one. For example, the concatenation
operator (+) that we just considered is built in to the language as a binary operator
in the same way as familiar operations on numbers.

The concatenation operation (along with the ability to declare String vari-
ables and to use them in expressions and assignment statements) is sufficiently
powerful to allow us to attack some nontrivial computing tasks. As an example,

Ruler (PROGRAM 1.2.1) computes a table of
values of the ruler function that describes
the relative lengths of the marks on a ruler.
One noteworthy feature of this computa-
tion is that it illustrates how easy is is to craft
short programs that produce huge amounts
of output. If you extend this program in the
obvious way to print five lines, six lines, sev-
en lines, and so forth, you will see that each
time you add just two statements to this

program, you increase the size of its output by precisely one more than a factor of
two. Specifically, if the program prints n lines, the nth line contains 2n!1 numbers.
For example, if you were to add statements in this way so that the program prints
30 lines, it would attempt to print more than 1 billion numbers.

values sequences of characters

typical
literals

"Hello," "1 " " * "

operation concatenate

operator +

Java’s built-in String data type

expression value

"Hi, " + "Bob" "Hi, Bob"

"1" + " 2 " + "1" "1 2 1"

"1234" + " + " + "99" "1234 + 99"

"1234" + "99" "123499"

Typical String expressions

!"#$%&'(')!"*+,,,:3 ./01/23,,,0425,67

20 Elements of Programming

% javac Ruler.java
% java Ruler
1
1 2 1
1 2 1 3 1 2 1
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

As just discussed, our most frequent use (by far) of the concatenation operation is
to put together results of computation for output with System.out.print() and
System.out.println(). For example, we could simplify UseArgument (PROGRAM
1.1.2) by replacing its three statements with this single statement:

System.out.println("Hi, " + args[0] + ". How are you?");

We have considered the String type first precisely because we need it for output
(and command-line input) in programs that process other types of data.

Program 1.2.1 String concatenation example

public class Ruler
{
 public static void main(String[] args)
 {
 String ruler1 = "1";
 String ruler2 = ruler1 + " 2 " + ruler1;
 String ruler3 = ruler2 + " 3 " + ruler2;
 String ruler4 = ruler3 + " 4 " + ruler3;
 System.out.println(ruler1);
 System.out.println(ruler2);
 System.out.println(ruler3);
 System.out.println(ruler4);
 }
}

This program prints the relative lengths of the subdivisions on a ruler. The nth line of output
is the relative lengths of the marks on a ruler subdivided in intervals of 1/2 n of an inch. For
example, the fourth line of output gives the relative lengths of the marks that indicate intervals
of one-sixteenth of an inch on a ruler.

The ruler function for n = 4

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

!"#$%&'(')!"*+,,,02 ./01/23,,,0425,67

211.2 Built-in Types of Data

Integers An int is an integer (natural number) between –2147483648 (!2 31)
and 2147483647 (2 31!1). These bounds derive from the fact that integers are rep-
resented in binary with 32 binary digits: there are 232 possible values. (The term
binary digit is omnipresent in computer science, and we nearly always use the ab-
breviation bit : a bit is either 0 or 1.) The range of possible int values is asymmetric
because zero is included with the positive values. See the booksite for more details
about number representation, but in the present context it suffices to know that
an int is one of the finite set of values in the range
just given. Sequences of the characters 0 through 9,
possibly with a plus or minus sign at the beginning
(that, when interpreted as decimal numbers, fall
within the defined range), are integer literal values.
We use ints frequently because they naturally arise
when implementing programs.

Standard arithmetic operators for addition/
subtraction (+ and -), multiplication (*), division
(/), and remainder (%) for the int data type are
built in to Java. These operators take two int op-
erands and produce an int result, with one signifi-
cant exception—division or remainder by zero is
not allowed. These operations are defined just as in
grade school (keeping in mind that all results must
be integers): given two int values a and b, the value
of a / b is the number of times b goes into a with
the fractional part discarded, and the value of a % b is the remainder that you get
when you divide a by b. For example, the value of 17 / 3 is 5, and the value of 17 % 3
is 2. The int results that we get from arithmetic operations are just what we expect,
except that if the result is too large to fit into int’s 32-bit representation, then it
will be truncated in a well-defined manner. This situation is known as overflow. In

values integers between !2 31 and "2 31!1

typical literals 1234 99 -99 0 1000000

operations add subtract multiply divide remainder

operators + - * / %

Java’s built-in int data type

expression value comment

5 + 3 8

5 - 3 2

5 * 3 15

5 / 3 1 no fractional part

5 % 3 2 remainder

1 / 0 run-time error

3 * 5 - 2 13 * has precedence

3 + 5 / 2 5 / has precedence

3 - 5 - 2 -4 left associative

(3 - 5) - 2 -4 better style

3 - (5 - 2) 0 unambiguous

Typical int expressions

!"#$%&'(')!"*+,,,0: ./01/23,,,0425,67

22 Elements of Programming

% javac IntOps.java
% java IntOps 1234 99
1234 * 99 = 122166
1234 / 99 = 12
1234 % 99 = 46
1234 = 12 * 99 + 46

Program 1.2.2 Integer multiplication and division

public class IntOps
{
 public static void main(String[] args)
 {
 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);
 int p = a * b;
 int q = a / b;
 int r = a % b;
 System.out.println(a + " * " + b + " = " + p);
 System.out.println(a + " / " + b + " = " + q);
 System.out.println(a + " % " + b + " = " + r);
 System.out.println(a + " = " + q + " * " + b + " + " + r);
 }
}

Arithmetic for integers is built in to Java. Most of this code is devoted to the task of getting the
values in and out; the actual arithmetic is in the simple statements in the middle of the program
that assign values to p, q, and r.

general, we have to take care that such a result is not misinterpreted by our code.
For the moment, we will be computing with small numbers, so you do not have to
worry about these boundary conditions.

 PROGRAM 1.2.2 illustrates basic operations for manipulating integers, such as
the use of expressions involving arithmetic operators. It also demonstrates the use
of Integer.parseInt() to convert String values on the command line to int
values, as well as the use of automatic type conversion to convert int values to
String values for output.

!"#$%&'(')!"*+,,,00 ./01/23,,,0425,67

231.2 Built-in Types of Data

Three other built-in types are different representations of integers in Java.
The long, short, and byte types are the same as int except that they use 64, 16,
and 8 bits respectively, so the range of allowed values is accordingly different. Pro-
grammers use long when working with huge integers, and the other types to save
space. You can find a table with the maximum and minimum values for each type
on the booksite, or you can figure them out for yourself from the numbers of bits.

Floating-point numbers The double type is for representing floating-point
numbers, for use in scientific and commercial applications. The internal represen-
tation is like scientific notation, so that we can compute with numbers in a huge
range. We use floating-point numbers to repre-
sent real numbers, but they are decidedly not the
same as real numbers! There are infinitely many
real numbers, but we can only represent a finite
number of floating-points in any digital com-
puter representation. Floating-point numbers
do approximate real numbers sufficiently well
that we can use them in applications, but we of-
ten need to cope with the fact that we cannot
always do exact computations.

We can use a sequence of digits with a
decimal point to type floating-point numbers.
For example, 3.14159 represents a six-digit ap-
proximation to #. Alternatively, we can use a notation like scientific notation: the
literal 6.022e23 represents the number 6.022 $ 1023. As with integers, you can use
these conventions to write floating-point literals in your programs or to provide
floating-point numbers as string parameters on the command line.

The arithmetic operators +, -, *, and / are defined for double. Beyond the
built-in operators, the Java Math library defines the square root, trigonometric

values real numbers (specified by IEEE 754 standard)

typical literals 3.14159 6.022e23 -3.0 2.0 1.4142135623730951

operations add subtract multiply divide

operators + - * /

Java’s built-in double data type

expression value

3.141 + .03 3.171

3.141 - .03 3.111

6.02e23 / 2.0 3.01e23

5.0 / 3.0 1.6666666666666667

10.0 % 3.141 0.577

1.0 / 0.0 Infinity

Math.sqrt(2.0) 1.4142135623730951

Math.sqrt(-1.0) NaN

Typical double expressions

!"#$%&'(')!"*+,,,0. ./01/23,,,0425,67

24 Elements of Programming

functions, logarithm/exponential functions, and other common functions for
floating-point numbers. To use one of these values in an expression, we write the
name of the function followed by its argument in parentheses. For example, you
can use the code Math.sqrt(2.0) when you want to use the square root of 2 in an
expression. We discuss in more detail the mechanism behind this arrangement in
SECTION 2.1 and more details about the Math library at the end of this section.

When working with floating point numbers, one of the first things that
you will encounter is the issue of precision: 5.0/2.0 is 2.5 but 5.0/3.0 is
1.6666666666666667. In SECTION 1.5, you will learn Java’s mechanism for control-

% javac Quadratic.java
% java Quadratic -3.0 2.0
2.0
1.0

% java Quadratic -1.0 -1.0
1.618033988749895
-0.6180339887498949

% java Quadratic 1.0 1.0
NaN
NaN

Program 1.2.3 Quadratic formula

public class Quadratic
{
 public static void main(String[] args)
 {
 double b = Double.parseDouble(args[0]);
 double c = Double.parseDouble(args[1]);
 double discriminant = b*b - 4.0*c;
 double d = Math.sqrt(discriminant);
 System.out.println((-b + d) / 2.0);
 System.out.println((-b - d) / 2.0);
 }
}

This program prints out the roots of the polynomial x2 + bx + c, using the quadratic formula.
For example, the roots of x2 - 3x + 2 are 1 and 2 since we can factor the equation as (x - 1)
(x - 2); the roots of x2 - x - 1 are % and 1 - %, where % is the golden ratio, and the roots of x2 +
x + 1 are not real numbers.

!"#$%&'(')!"*+,,,0- ./01/23,,,0425,67

251.2 Built-in Types of Data

ling the number of significant digits that you see in output. Until then, we will work
with the Java default output format.

The result of a calculation can be one of the special values Infinity (if the
number is too large to be represented) or NaN (if the result of the calculation is
undefined). Though there are myriad details to consider when calculations involve
these values, you can use double in a natural way and begin to write Java programs
instead of using a calculator for all kinds of calculations. For example, PROGRAM
1.2.3 shows the use of double values in computing the roots of a quadratic equa-
tion using the quadratic formula. Several of the exercises at the end of this section
further illustrate this point.

As with long, short, and byte for integers, there is another representation
for real numbers called float. Programmers sometimes use float to save space
when precision is a secondary consideration. The double type is useful for about
15 significant digits; the float type is good for only about 7 digits. We do not use
float in this book.

Booleans The boolean type has just two values: true
and false. These are the two possible boolean literals. Ev-
ery boolean variable has one of these two values, and every
boolean operation has operands and a result that takes on
just one of these two values. This simplicity is deceiving—
boolean values lie at the foundation of computer science.

The most important operations defined for booleans are and (&&), or (||),
and not (!), which have familiar definitions:

a && b is true if both operands are true, and false if either is false.
a || b is false if both operands are false, and true if either is true.
!a is true if a is false, and false if a is true.

Despite the intuitive nature of these definitions, it is worthwhile to fully specify
each possibility for each operation in tables known as truth tables. The not function

values true or false

literals true false

operations and or not

operators && || !

Java’s built-in boolean data type

a !a a b a && b a || b

true false false false false false

false true false true false true

true false false true

true true true true

Truth-table definitions of boolean operations

!"#$%&'(')!"*+,,,05 ./01/23,,,0425,67

26 Elements of Programming

has only one operand: its value for each of the two possible values of the operand is
specified in the second column. The and and or functions each have two operands:
there are four different possibilities for operand input values, and the values of the
functions for each possibility are specified in the right two columns.

We can use these operators with parentheses to develop arbitrarily complex
expressions, each of which specifies a well-defined boolean function. Often the
same function appears in different guises. For example, the expressions (a && b)
and !(!a || !b) are equivalent.

The study of manipulating expressions of this kind is known as Boolean logic.
This field of mathematics is fundamental to computing: it plays an essential role
in the design and operation of computer hardware itself, and it is also a starting
point for the theoretical foundations of computation. In the present context, we are
interested in boolean expressions because we use them to control the behavior of
our programs. Typically, a particular condition of interest is specified as a boolean
expression and a piece of program code is written to execute one set of statements
if the expression is true and a different set of statements if the expression is false.
The mechanics of doing so are the topic of SECTION 1.3.

Comparisons Some mixed-type operators take operands of one type and pro-
duce a result of another type. The most important operators of this kind are the
comparison operators ==, !=, <, <=, >, and >=, which all are defined for each primi-
tive numeric type and produce a boolean result. Since operations are defined only

a b a && b !a !b !a || !b !(!a || !b)

false false false true true true false

false true false true false true false

true false false false true true false

true true true false false false true

Truth-table proof that a && b and !(!a || !b) are identical

non-negative discriminant? (b*b - 4.0*a*c) >= 0.0

beginning of a century? (year % 100) == 0

legal month? (month >= 1) && (month <= 12)

Typical comparison expressions

!"#$%&'(')!"*+,,,08 ./01/23,,,0425,67

271.2 Built-in Types of Data

% javac LeapYear.java
% java LeapYear 2004
true
% java LeapYear 1900
false
% java LeapYear 2000
true

Program 1.2.4 Leap year

public class LeapYear
{
 public static void main(String[] args)
 {
 int year = Integer.parseInt(args[0]);
 boolean isLeapYear;
 isLeapYear = (year % 4 == 0);
 isLeapYear = isLeapYear && (year % 100 != 0);
 isLeapYear = isLeapYear || (year % 400 == 0);
 System.out.println(isLeapYear);
 }
}

This program tests whether an integer corresponds to a leap year in the Gregorian calendar. A
year is a leap year if it is divisible by 4 (2004), unless it is divisible by 100 in which case it is not
(1900), unless it is divisible by 400 in which case it is (2000).

with respect to data types, each of these symbols stands for many operations, one
for each data type. It is required that both operands be of the same type. The result
is always boolean.

Even without going into the details of number representation, it is clear that
the operations for the various types are really quite different: for example, it is one
thing to compare two ints to check that (2 <= 2) is true but quite another to
compare two doubles to check whether (2.0 <= 0.002e3) is true or false. Still,
these operations are well-defined and useful to write code that tests for conditions
such as (b*b - 4.0*a*c) >= 0.0, which is frequently needed, as you will see.

!"#$%&'(')!"*+,,,01 ./01/23,,,0425,67

28 Elements of Programming

The comparison operations have lower precedence than arithmetic operators
and higher precedence than boolean operators, so you do not need the parentheses
in an expression like (b*b - 4.0*a*c) >= 0.0, and you could write an expression
like month >= 1 && month <= 12 without parentheses to test whether the value of
the int variable month is between 1 and 12. (It is better style to use the parentheses,

however.)
Comparison operations, together

with boolean logic, provide the basis for
decision-making in Java programs. PRO-
GRAM 1.2.4 is an example of their use,
and you can find other examples in the
exercises at the end of this section. More
importantly, in SECTION 1.3 we will see
the role that boolean expressions play in
more sophisticated programs.

Library methods and APIs As we have seen, many programming tasks in-
volve using Java library methods in addition to the built-in operations on data-type
values. The number of available library methods is vast. As you learn to program,
you will learn to use more and more library methods, but it is best at the beginning
to restrict your attention to a relatively small set of methods. In this chapter, you
have already used some of Java’s methods for printing, for converting data from
one type to another, and for computing mathematical functions (the Java Math li-
brary). In later chapters, you will learn not just how to use other methods, but how
to create and use your own methods.

For convenience, we will consistently summarize the library methods that you
need to know how to use in tables like this one:

public class System.out

void print(String s) print s

void println(String s) print s, followed by a newline

void println() print a newline

Note: Any type of data can be used (and will be automatically converted to String).

Excerpts from Java’s library for standard output

op meaning true false

== equal 2 == 2 2 == 3

!= not equal 3 != 2 2 != 2

< less than 2 < 13 2 < 2

<= less than or equal 2 <= 2 3 <= 2

> greater than 13 > 2 2 > 13

>= greater than or equal 3 >= 2 2 >= 3

Comparisons with int operands and a boolean result

!"#$%&'(')!"*+,,,09 ./01/23,,,0425,67

291.2 Built-in Types of Data

Such a table is known as an application programming interface (API). It provides
the information that you need to write an application program that uses the meth-
ods. Here is an API for the most commonly used methods in Java’s Math library:

public class Math

double abs(double a) absolute value of a

double max(double a, double b) maximum of a and b

double min(double a, double b) minimum of a and b

Note 1: abs(), max(), and min() are defined also for int, long, and float.

double sin(double theta) sine function

double cos(double theta) cosine function

double tan(double theta) tangent function

Note 2: Angles are expressed in radians. Use toDegrees() and toRadians() to convert.
Note 3: Use asin(), acos(), and atan() for inverse functions.

double exp(double a) exponential (e a)

double log(double a) natural log (loge a, or ln a)

double pow(double a, double b) raise a to the bth power (ab)

long round(double a) round to the nearest integer

double random() random number in [0, 1)

double sqrt(double a) square root of a

double E value of e (constant)

double PI value of # (constant)

See booksite for other available functions.

Excerpts from Java’s mathematics library

With the exception of random(), these methods implement mathematical func-
tions—they use their arguments to compute a value of a specified type. Each meth-
od is described by a line in the API that specifies the information you need to know
in order to use the method. The code in the tables is not the code that you type to
use the method; it is known as the method’s signature. The signature specifies the
type of the arguments, the method name, and the type of the value that the method
computes (the return value). When your program is executed, we say that it calls the
system library code for the method, which returns the value for use in your code.

!"#$%&'(')!"*+,,,03 ./01/23,,,0425,67

30 Elements of Programming

Note that random() does not implement a mathematical
function because it does not take an argument. On the other
hand, System.out.print() and System.out.println()
do not implement mathematical functions because they do
not return values and therefore do not have a return type.
(This condition is specified in the signature by the keyword
void.)

In your code, you can use a library method by typ-
ing its name followed by arguments of the specified type,
enclosed in parentheses and separated by commas. You can

use this code in the same way as you use variables and literals in expressions. When
you do so, you can expect that method to
compute a value of the appropriate type, as
documented in the left column of the API.
For example, you can write expressions like
Math.sin(x) * Math.cos(y) and so on.
Method arguments may also be expressions,
as in Math.sqrt(b*b - 4.0*a*c).

The Math library also defines the precise constant values PI (for #) and E (for
e), so that you can use those names to refer to those constants in your programs.
For example, the value of Math.sin(Math.PI/2) is 1.0 and the value of Math.
log(Math.E) is 1.0 (because Math.sin() takes its argument in radians and Math.
log() implements the natural logarithm function).

To be complete, we also include here the following API for Java’s conversion
methods, which we use for command-line arguments:

int Integer.parseInt(String s) convert s to an int value
double Double.parseDouble(String s) convert s to a double value

long Long.parseLong(String s) convert s to a long value

Java library methods for converting strings to primitive types

You do not need to use methods like these to convert from int, double, and long
values to String values for output, because Java automatically converts any val-
ue used as an argument to System.out.print() or System.out.println() to
String for output.

argument

Using a library method

double d = Math.sqrt(b*b - 4.0*a*c);

library name method name

return type

public class Math
 . . .

 double sqrt(double a)

 . . .

Anatomy of a method signature

method namesignature

library name

argument typereturn type

!"#$%&'(')!"*+,,,.2 ./01/23,,,0425,67

311.2 Built-in Types of Data

These APIs are typical of the online documentation that is the standard in
modern programming. There is extensive online documentation of the Java APIs
that is used by professional programmers, and it is available to you (if you are in-
terested) directly from the Java website or through our booksite. You do not need
to go to the online documentation to understand the code in this book or to write
similar code, because we present and explain in the text all of the library methods
that we use in APIs like these and summarize them in the endpapers. More impor-
tant, in CHAPTERS 2 AND 3 you will learn in this book how to develop your own APIs
and to implement functions for your own use.

Type conversion One of the primary rules of modern programming is that you
should always be aware of the type of data that your program is processing. Only
by knowing the type can you know precisely which set of values each variable can
have, which literals you can use, and which operations you can perform. Typical
programming tasks involve processing multiple types of data, so we often need to
convert data from one type to another. There are several ways to do so in Java.

Explicit type conversion. You can use a method that takes an argument of one
type (the value to be converted) and produces a result of another type. We have
already used the Integer.parseInt() and Double.parseDouble() library meth-
ods to convert String values to int and double values, respectively. Many other
methods are available for conversion among other types. For example, the library
method Math.round() takes a double argument and returns a long result: the
nearest integer to the argument. Thus, for example, Math.round(3.14159) and
Math.round(2.71828) are both of type long and have the same value (3).

Explicit cast. Java has some built-in type conversion conventions for primitive
types that you can take advantage of when you are aware that you might lose infor-

expression library type value

Integer.parseInt("123") Integer int 123

Math.sqrt(5.0*5.0 - 4.0*4.0) Math double 3.0

Math.random() Math double random in [0, 1)

Math.round(3.14159) Math long 3

Typical expressions that use Java library methods

!"#$%&'(')!"*+,,,.: ./01/23,,,0425,67

32 Elements of Programming

mation. You have to make your intention to do so explicit by using a device called a
cast. You cast an expression from one primitive type to another by prepending the
desired type name within parentheses. For example, the expression (int) 2.71828
is a cast from double to int that produces an int with value 2. The conversion
methods defined for casts throw away information in a reasonable way (for a full
list, see the booksite). For example, casting a floating-point number to an integer
discards the fractional part by rounding towards zero. If you want a different result,
such as rounding to the nearest integer, you must use the explicit conversion meth-
od Math.round(), as just discussed (but you then need to use an explicit cast to
int, since that method returns a long). RandomInt (PROGRAM 1.2.5) is an example
that uses a cast for a practical computation.

Automatic promotion for numbers. You can use data of any primitive numeric
type where a value whose type has a larger range of values is expected, because Java
automatically converts to the type with the larger range. This kind of conversion is
called promotion. For example, we
used numbers all of type double
in PROGRAM 1.2.3, so there is no
conversion. If we had chosen to
make b and c of type int (using
Integer.parseInt() to convert
the command-line arguments),
automatic promotion would be
used to evaluate the expression
b*b - 4.0*c. First, c is promot-
ed to double to multiply by the
double literal 4.0, with a double
result. Then, the int value b*b is
promoted to double for the sub-
traction, leaving a double result.
Or, we might have written b*b -
4*c. In that case, the expression b*b - 4*c would be evaluated as an int and then
the result promoted to double, because that is what Math.sqrt() expects. Promo-
tion is appropriate because your intent is clear and it can be done with no loss of in-
formation. On the other hand, a conversion that might involve loss of information
(for example, assigning a double to an int) leads to a compile-time error.

expression expression
type

expression
value

"1234" + 99 String "123499"

Integer.parseInt("123") int 123

(int) 2.71828 int 2

Math.round(2.71828) long 3

(int) Math.round(2.71828) int 3

(int) Math.round(3.14159) int 3

11 * 0.3 double 3.3

(int) 11 * 0.3 double 3.3

11 * (int) 0.3 int 0

(int) (11 * 0.3) int 3

Typical type conversions

!"#$%&'(')!"*+,,,.0 ./01/23,,,0425,67

331.2 Built-in Types of Data

Casting has higher precedence than arithmetic operations—any cast is applied to
the value that immediately follows it. For example, if we write int n = (int) 11
* 0.3, the cast is no help: the literal 11 is already an integer, so the cast (int) has
no effect. In this example, the compiler produces a possible loss of precision
error message because there would be a loss of precision in converting the resulting
value (3.3) to an int for assignment to n. The error is helpful because the intended
computation for this code is likely (int) (11 * 0.3), which has the value 3, not
3.3.

% javac RandomInt.java

% java RandomInt 1000
548

% java RandomInt 1000
141

% java RandomInt 1000000
135032

Program 1.2.5 Casting to get a random integer

public class RandomInt
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 double r = Math.random(); // uniform between 0 and 1
 int n = (int) (r * N); // uniform between 0 and N-1
 System.out.println(n);
 }
}

This program uses the Java method Math.random() to generate a random number r in the
interval [0, 1), then multiplies r by the command-line argument N to get a random number
greater than or equal to 0 and less than N, then uses a cast to truncate the result to be an integer
n between 0 and N-1.

!"#$%&'(')!"*+,,,.. ./01/23,,,0425,67

34 Elements of Programming

BEGINNING PROGRAMMERS TEND TO FIND TYPE conversion to be an annoyance, but expe-
rienced programmers know that paying careful attention to data types is a key to
success in programming. It is well worth your while to take the time to understand
what type conversion is all about. After you have written just a few programs, you
will understand that these rules help you to make your intentions explicit and to
avoid subtle bugs in your programs.

Summary A data type is a set of values and a set of operations on those values.
Java has eight primitive data types: boolean, char, byte, short, int, long, float,
and double. In Java code, we use operators and expressions like those in familiar
mathematical expressions to invoke the operations associated with each type. The
boolean type is for computing with the logical values true and false; the char
type is the set of character values that we type; and the other six are numeric types,
for computing with numbers. In this book, we most often use boolean, int, and
double; we do not use short or float. Another data type that we use frequently,
String, is not primitive, but Java has some built-in facilities for Strings that are
like those for primitive types.

When programming in Java, we have to be aware that every operation is de-
fined only in the context of its data type (so we may need type conversions) and
that all types can have only a finite number of values (so we may need to live with
imprecise results).

The boolean type and its operations— &&, ||, and ! —are the basis for logi-
cal decision-making in Java programs, when used in conjunction with the mixed-
type comparison operators ==, !=, <, >, <=, and >=. Specifically, we use boolean
expressions to control Java’s conditional (if) and loop (for and while) constructs,
which we will study in detail in the next section.

The numeric types and Java’s libraries give us the ability to use Java as an ex-
tensive mathematical calculator. We write arithmetic expressions using the built-in
operators +, -, *, /, and % along with Java methods from the Math library. Although
the programs in this section are quite rudimentary by the standards of what we will
be able to do after the next section, this class of programs is quite useful in its own
right. You will use primitive types and basic mathematical functions extensively
in Java programming, so the effort that you spend now understanding them will
certainly be worthwhile.

!"#$%&'(')!"*+,,,.- ./01/23,,,0425,67

351.2 Built-in Types of Data

Q&A

Q. What happens if I forget to declare a variable?

A. The compiler complains, as shown below for a program IntOpsBad, which is
the same as PROGRAM 1.2.2 except that the int variable p is omitted from the decla-
ration statement.

% javac IntOpsBad.java
IntOpsBad.java:7: cannot resolve symbol
symbol : variable p
location: class IntOpsBad
p = a * b;
 ^
IntOpsBad.java:10: cannot resolve symbol
symbol : variable p
location: class IntOpsBad
System.out.println(a + " * " + b + " = " + p);
 ^
2 errors

The compiler says that there are two errors, but there is really just one: the declara-
tion of p is missing. If you forget to declare a variable that you use often, you will
get quite a few error messages. A good strategy is to correct the first error and check
that correction before addressing later ones.

Q. What happens if I forget to initialize a variable?

A. The compiler checks for this condition and will give you a variable might
not have been initialized error message if you try to use the variable in an
expression.

Q. Is there a difference between = and == ?

A. Yes, they are quite different! The first is an assignment operator that changes
the value of a variable, and the second is a comparison operator that produces a
boolean result. Your ability to understand this answer is a sure test of whether you
understood the material in this section. Think about how you might explain the
difference to a friend.

!"#$%&'(')!"*+,,,.5 ./01/23,,,0425,67

36 Elements of Programming

Q. Why do int values sometime become negative when they get large?

A. If you have not experienced this phenomenon, see EXERCISE 1.2.10. The problem
has to do with the way integers are represented in the computer. You can learn the
details on the booksite. In the meantime, a safe strategy is using the int type when
you know the values to be less than ten digits and the long type when you think the
values might get to be ten digits or more.

Q. It seems wrong that Java should just let ints overflow and give bad values.
Shouldn’t Java automatically check for overflow?

A. Yes, this issue is a contentious one among programmers. The short answer for
now is that the lack of such checking is one reason such types are called primitive
data types. A little knowledge can go a long way in avoiding such problems. Again,
it is fine to use the int type for small numbers, but when values run into the bil-
lions, you cannot.

Q. What is the value of Math.abs(-2147483648)?

A. -2147483648. This strange (but true) result is a typical example of the effects of
integer overflow.

Q. It is annoying to see all those digits when printing a float or a double. Can we
get System.out.println() to print out just two or three digits after the decimal
point?

A. That sort of task involves a closer look at the method used to convert from
double to String. The Java library function System.out.printf() is one way
to do the job, and it is similar to the basic printing method in the C programming
language and many modern languages, as discussed in SECTION 1.5. Until then, we
will live with the extra digits (which is not all bad, since doing so helps us to get
used to the different primitive types of numbers).

Q. How can I initialize a double variable to infinity?

A. Java has built-in constants available for this purpose: Double.POSITIVE_IN-

FINITY and Double.NEGATIVE_INFINITY.

!"#$%&'(')!"*+,,,.8 ./01/23,,,0425,67

371.2 Built-in Types of Data

Q. What is the value of Math.round(6.022e23)?

A. You should get in the habit of typing in a tiny Java program to answer such
questions yourself (and trying to understand why your program produces the re-
sult that it does).

Q. Can you compare a double to an int?

A. Not without doing a type conversion, but remember that Java usually does the
requisite type conversion automatically. For example, if x is an int with the value
3, then the expression (x < 3.1) is true—Java converts x to double (because 3.1
is a double literal) before performing the comparison.

Q. Are expressions like 1/0 and 1.0/0.0 legal in Java?

A. No and yes. The first generates a run-time exception for division by zero (which
stops your program because the value is undefined); the second is legal and has the
value Infinity.

Q. Are there functions in Java’s Math library for other trigonometric functions, like
cosecant, secant, and cotangent?

A. No, because you could use Math.sin(), Math.cos(), and Math.tan() to com-
pute them. Choosing which functions to include in an API is a tradeoff between the
convenience of having every function that you need and the annoyance of having
to find one of the few that you need in a long list. No choice will satisfy all users,
and the Java designers have many users to satisfy. Note that there are plenty of re-
dundancies even in the APIs that we have listed. For example, you could use Math.
sin(x)/Math.cos(x) instead of Math.tan(x).

Q. Can you use < and > to compare String variables?

A. No. Those operators are defined only for primitive types.

Q. How about == and != ?

A. Yes, but the result may not be what you expect, because of the meanings these
operators have for non-primitive types. For example, there is a distinction between

!"#$%&'(')!"*+,,,.1 ./01/23,,,0425,67

38 Elements of Programming

a String and its value. The expression "abc" == "ab" + x is false when x is a
String with value "c" because the two operands are stored in different places in
memory (even though they have the same value). This distinction is essential, as
you will learn when we discuss it in more detail in SECTION 3.1.

Q. What is the result of division and remainder for negative integers?

A. The quotient a / b rounds toward 0; the remainder a % b is defined such that
(a / b) * b + a % b is always equal to a. For example, -14/3 and 14/-3 are both
-4, but -14 % 3 is -2 and 14 % -3 is 2.

Q. Will (a < b < c) test whether three numbers are in order?

A. No, that will not compile. You need to say (a < b && b < c).

Q. Fifteen digits for floating-point numbers certainly seems enough to me. Do I
really need to worry much about precision?

A. Yes, because you are used to mathematics based on real numbers with infinite
precision, whereas the computer always deals with approximations. For example,
(0.1 + 0.1 == 0.2) is true but (0.1 + 0.1 + 0.1 == 0.3) is false! Pitfalls like this
are not at all unusual in scientific computing. Novice programmers should avoid
comparing two floating-point numbers for equality.

Q. Why do we say (a && b) and not (a & b)?

A. Java also has a & operator that we do not use in this book but which you may

encounter if you pursue advanced programming courses.

Q. Why is the value of 10^6 not 1000000 but 12?

A. The ^ operator is not an exponentiation operator, which you must have been
thinking. Instead, it is an operator like & that we do not use in this book. You want
the literal 1e6. You could also use Math.pow(10, 6) but doing so is wasteful if you
are raising 10 to a known power.

!"#$%&'(')!"*+,,,.9 ./01/23,,,0425,67

391.2 Built-in Types of Data

Exercises

1.2.1 Suppose that a and b are int values. What does the following sequence of
statements do?

int t = a; b = t; a = b;

1.2.2 Write a program that uses Math.sin() and Math.cos() to check that the
value of cos2 & + sin2 & is approximately 1 for any & entered as a command-line argu-
ment. Just print the value. Why are the values not always exactly 1?

1.2.3 Suppose that a and b are int values. Show that the expression

(!(a && b) && (a || b)) || ((a && b) || !(a || b))

is equivalent to true.

1.2.4 Suppose that a and b are int values. Simplify the following expression:
(!(a < b) && !(a > b)).

1.2.5 The exclusive or operator ^ for boolean operands is defined to be true if
they are different, false if they are the same. Give a truth table for this function.

1.2.6 Why does 10/3 give 3 and not 3.333333333?

Solution. Since both 10 and 3 are integer literals, Java sees no need for type conver-
sion and uses integer division. You should write 10.0/3.0 if you mean the numbers
to be double literals. If you write 10/3.0 or 10.0/3, Java does implicit conversion
to get the same result.

1.2.7 What do each of the following print?
a. System.out.println(2 + "bc");

b. System.out.println(2 + 3 + "bc");

c. System.out.println((2+3) + "bc");

d. System.out.println("bc" + (2+3));

e. System.out.println("bc" + 2 + 3);

Explain each outcome.

!"#$%&'(')!"*+,,,.3 ./01/23,,,0425,67

40 Elements of Programming

1.2.8 Explain how to use PROGRAM 1.2.3 to find the square root of a number.

1.2.9 What do each of the following print?
a. System.out.println('b');

b. System.out.println('b' + 'c');

c. System.out.println((char) ('a' + 4));

Explain each outcome.

1.2.10 Suppose that a variable a is declared as int a = 2147483647 (or equiva-
lently, Integer.MAX_VALUE). What do each of the following print?

a. System.out.println(a);

b. System.out.println(a+1);

c. System.out.println(2-a);

d. System.out.println(-2-a);

e. System.out.println(2*a);

f. System.out.println(4*a);

Explain each outcome.

1.2.11 Suppose that a variable a is declared as double a = 3.14159. What do each
of the following print?

a. System.out.println(a);

b. System.out.println(a+1);

c. System.out.println(8/(int) a);

d. System.out.println(8/a);

e. System.out.println((int) (8/a));

Explain each outcome.

1.2.12 Describe what happens if you write sqrt instead of Math.sqrt in PROGRAM
1.2.3.

1.2.13 What is the value of (Math.sqrt(2) * Math.sqrt(2) == 2) ?

!"#$%&'(')!"*+,,,-2 ./01/23,,,0425,67

411.2 Built-in Types of Data

1.2.14 Write a program that takes two positive integers as command-line argu-
ments and prints true if either evenly divides the other.

1.2.15 Write a program that takes three positive integers as command-line argu-
ments and prints true if any one of them is greater than or equal to the sum of the
other two and false otherwise. (Note : This computation tests whether the three
numbers could be the lengths of the sides of some triangle.)

1.2.16 A physics student gets unexpected results when using the code

 F = G * mass1 * mass2 / r * r;

to compute values according to the formula F = Gm1m2 ' r 2. Explain the problem
and correct the code.

1.2.17 Give the value of a after the execution of each of the following sequences:

int a = 1; boolean a = true; int a = 2;
a = a + a; a = !a; a = a * a;
a = a + a; a = !a; a = a * a;
a = a + a; a = !a; a = a * a;

1.2.18 Suppose that x and y are double values that represent the Cartesian coor-
dinates of a point (x, y) in the plane. Give an expression whose value is the distance
of the point from the origin.

1.2.19 Write a program that takes two int values a and b from the command line
and prints a random integer between a and b.

1.2.20 Write a program that prints the sum of two random integers between 1 and
6 (such as you might get when rolling dice).

1.2.21 Write a program that takes a double value t from the command line and
prints the value of sin(2t) " sin(3t).

1.2.22 Write a program that takes three double values x0, v0, and t from the com-
mand line and prints the value of x0 " v0t " g t 2 ' 2, where g is the constant 9.78033.
(Note : This value the displacement in meters after t seconds when an object is
thrown straight up from initial position x0 at velocity v0 meters per second.)

1.2.23 Write a program that takes two int values m and d from the command line
and prints true if day d of month m is between 3/20 and 6/20, false otherwise.

!"#$%&'(')!"*+,,,-: ./01/23,,,0425,67

42 Elements of Programming

Creative Exercises

1.2.24 Loan payments. Write a program that calculates the monthly payments
you would have to make over a given number of years to pay off a loan at a given
interest rate compounded continuously, taking the number of years t, the principal
P, and the annual interest rate r as command-line arguments. The desired value is
given by the formula Pe rt. Use Math.exp().

1.2.25 Wind chill. Given the temperature t (in Fahrenheit) and the wind speed v
(in miles per hour), the National Weather Service defines the effective temperature
(the wind chill) to be:

w = 35.74 " 0.6215 t " (0.4275 t ! 35.75) v 0.16

Write a program that takes two double command-line arguments t and v and
prints out the wind chill. Use Math.pow(a, b) to compute ab. Note : The formula is
not valid if t is larger than 50 in absolute value or if v is larger than 120 or less than
3 (you may assume that the values you get are in that range).

1.2.26 Polar coordinates. Write a program that converts from Car-
tesian to polar coordinates. Your program should take two real num-
bers x and y on the command line and print the polar coordinates r
and &. Use the Java method Math.atan2(y, x) which computes the
arctangent value of y/x that is in the range from !# to #.

1.2.27 Gaussian random numbers. One way to generate a random
number taken from the Gaussian distribution is to use the Box-Muller formula

w = sin(2 # v) (!2 ln u)1/2

where u and v are real numbers between 0 and 1 generated by the Math.random()
method. Write a program StdGaussian that prints out a standard Gaussian ran-
dom variable.

1.2.28 Order check. Write a program that takes three double values x, y, and z
as command-line arguments and prints true if the values are strictly ascending or
descending (x < y < z or x > y > z), and false otherwise.

1.2.29 Day of the week. Write a program that takes a date as input and prints the
day of the week that date falls on. Your program should take three command line

x

yr

Polar coordinates

!"#$%&'(')!"*+,,,-0 ./01/23,,,0425,67

431.2 Built-in Types of Data

parameters: m (month), d (day), and y (year). For m, use 1 for January, 2 for Febru-
ary, and so forth. For output, print 0 for Sunday, 1 for Monday, 2 for Tuesday, and
so forth. Use the following formulas, for the Gregorian calendar:

y0 = y ! (14 ! m) / 12
x = y0 " y0 /4 ! y0 /100 " y0 /400
m0 = m " 12 $ ((14 ! m) / 12) ! 2
d0 = (d " x " (31$m0)/12) % 7

Example: On what day of the week was February 14, 2000?

y0 = 2000 ! 1 = 1999
x = 1999 " 1999/4 ! 1999/100 " 1999/400 = 2483
m0 = 2 " 12$1 ! 2 = 12
d0 = (14 " 2483 " (31$12) / 12) % 7 = 2500 % 7 = 1

Answer : Monday.

1.2.30 Uniform random numbers. Write a program that prints five uniform ran-
dom values between 0 and 1, their average value, and their minimum and maxi-
mum value. Use Math.random(), Math.min(), and Math.max().

1.2.31 Mercator projection. The Mercator projection is a conformal (angle preserv-
ing) projection that maps latitude (and longitude) to rectangular coordinates
(x, y). It is widely used—for example, in nautical charts and in the maps that you
print from the web. The projection is defined by the equations x *) !)0 and
y * 1/2 ln ((1 " sin () ' (1 ! sin ()), where)0 is the longitude of the point in the
center of the map. Write a program that takes)0 and the latitude and longitude of
a point from the command line and prints its projection.

1.2.32 Color conversion. Several different formats are used to represent color. For
example, the primary format for LCD displays, digital cameras, and web pages,
known as the RGB format, specifies the level of red (R), green (G), and blue (B)
on an integer scale from 0 to 255. The primary format for publishing books and
magazines, known as the CMYK format, specifies the level of cyan (C), magenta
(M), yellow (Y), and black (K) on a real scale from 0.0 to 1.0. Write a program RG-
BtoCMYK that converts RGB to CMYK. Take three integers—r, g, and b—from the

!"#$%&'(')!"*+,,,-. ./01/23,,,0425,67

44 Elements of Programming

command line and print the equivalent CMYK values. If the RGB values are all 0,
then the CMY values are all 0 and the K value is 1; otherwise, use these formulas:

w * max (r / 255, g / 255, b / 255)
 c * (w ! (r / 255)) ' w
m * (w ! (g / 255)) ' w
 y * (w ! (b / 255)) ' w
 k * 1 ! w

1.2.33 Great circle. Write a program GreatCircle that takes four command-line
arguments—x1, y1, x2, and y2—(the latitude and longitude, in degrees, of two
points on the earth) and prints out the great-circle distance between them. The
great-circle distance (in nautical miles) is given by the equation:

d = 60 arccos(sin(x1) sin(x2) " cos(x1) cos(x2) cos(y1 ! y2))

Note that this equation uses degrees, whereas Java’s trigonometric functions use
radians. Use Math.toRadians() and Math.toDegrees() to convert between the
two. Use your program to compute the great-circle distance between Paris (48.87°
N and !2.33° W) and San Francisco (37.8° N and 122.4° W).

1.2.34 Three-sort. Write a program that takes three int values from the command
line and prints them in ascending order. Use Math.min() and Math.max().

1.2.35 Dragon curves. Write a program to print
the instructions for drawing the dragon curves of
order 0 through 5. The instructions are strings of
F, L, and R characters, where F means “draw line
while moving 1 unit forward,” L means “turn left,”
and R means “turn right.” A dragon curve of order
N is formed when you fold a strip of paper in half N
times, then unfold to right angles. The key to solving
this problem is to note that a curve of order N is a
curve of order N!1 followed by an L followed by a
curve of order N!1 traversed in reverse order, and
then to figure out a similar description for the reverse curve .

F

Dragon curves of order 0, 1, 2, and 3

FLF

FLFLFRF

FLFLFRFLFLFRFRF

!"#$%&'(')!"*+,,,-- ./01/23,,,0425,67

451.2 Built-in Types of Data

!"#$%&'(')!"*+,,,-5 ./01/23,,,0425,67

Elements of Programming

1.3 Conditionals and Loops

IN THE PROGRAMS THAT WE HAVE examined to this point, each of the statements in the
program is executed once, in the order given. Most programs are more complicated
because the sequence of statements and the number of times each is executed can
vary. We use the term control flow to refer to statement sequencing in a program. In
this section, we introduce statements that
allow us to change the control flow, using
logic about the values of program vari-
ables. This feature is an essential compo-
nent of programming.

Specifically, we consider Java state-
ments that implement conditionals, where
some other statements may or may not
be executed depending on certain condi-
tions, and loops, where some other state-
ments may be executed multiple times,
again depending on certain conditions. As you will see in numerous examples in
this section, conditionals and loops truly harness the power of the computer and
will equip you to write programs to accomplish a broad variety of tasks that you
could not contemplate attempting without a computer.

If statements Most computations require different actions for different inputs.
One way to express these differences in Java is the if statement:

if (<boolean expression>) { <statements> }

This description introduces a formal notation known as a template that we will
use to specify the format of Java constructs. We put within angle brackets (< >) a
construct that we have already defined, to indicate that we can use any instance of
that construct where specified. In this case, <boolean expression> represents an
expression that has a boolean value, such as one involving a comparison operation,
and <statements> represents a statement block (a sequence of Java statements,
each terminated by a semicolon). This latter construct is familiar to you: the body
of main() is such a sequence. If the sequence is a single statement, the curly braces
are optional. It is possible to make formal definitions of <boolean expression>
and <statements>, but we refrain from going into that level of detail. The meaning

1.3.1 Flipping a fair coin 49
1.3.2 Your first while loop 51
1.3.3 Computing powers of two 53
1.3.4 Your first nested loops 59
1.3.5 Harmonic numbers 61
1.3.6 Newton’s method 62
1.3.7 Converting to binary 64
1.3.8 Gambler’s ruin simulation 66
1.3.9 Factoring integers 69

Programs in this section

!"#$%&'(')!"*+,,,-8 ./01/23,,,0425,67

471.3 Conditionals and Loops

of an if statement is self-explanatory: the statement(s) in the sequence are to be
executed if and only if the expression is true.

As a simple example, suppose that you want to compute the absolute value of
an int value x. This statement does the job:

if (x < 0) x = -x;

As a second simple example, consider the following statement:

if (x > y)
{
 int t = x;
 x = y;
 y = t;
}

This code puts x and y in ascending order by exchanging them if
necessary.

You can also add an else clause to an if statement, to express the concept of
executing either one statement (or sequence of statements) or another, depending
on whether the boolean expression is true or false, as in the following template:

if (<boolean expression>) <statements T>
else <statements F>

As a simple example of the need for an else clause, consider the following code,
which assigns the maximum of two int values to the variable max:

if (x > y) max = x;
else max = y;

One way to understand control flow is to visualize it with a diagram called a flow-
chart. Paths through the flowchart correspond to flow-of-control paths in the pro-

x > y ?

max = x;

if (x > y) max = x;
else max = y;

Flowchart examples (if statements)

noyes

max = y;

x < 0 ?

if (x < 0) x = -x;

noyes

x = -x;

boolean
expression

Anatomy of an if statement

if (x > y)

sequence
of

statements

{
 int t = x;
 x = y;
 y = t;
}

!"#$%&'(')!"*+,,,-1 ./01/23,,,0425,67

48 Elements of Programming

gram. In the early days of computing, when programmers used low-level languages
and difficult-to-understand flows of control, flowcharts were an essential part of
programming. With modern languages, we use flowcharts just to understand basic
building blocks like the if statement.

The accompanying table contains some examples of the use of if and if-
else statements. These examples are typical of simple calculations you might need
in programs that you write. Conditional statements are an essential part of pro-
gramming. Since the semantics (meaning) of statements like these is similar to their
meanings as natural-language phrases, you will quickly grow used to them.

PROGRAM 1.3.1 is another example of the use of the if-else statement, in
this case for the task of simulating a coin flip. The body of the program is a single
statement, like the ones in the table above, but it is worth special attention because
it introduces an interesting philosophical issue that is worth contemplating: can a
computer program produce random values? Certainly not, but a program can pro-
duce numbers that have many of the properties of random numbers.

absolute value if (x < 0) x = -x;

put x and y
into

sorted order

if (x > y)
{
 int t = x;
 y = x;
 x = t;
}

maximum of
x and y

if (x > y) max = x;
else max = y;

error check
for division
operation

if (den == 0) System.out.println("Division by zero");
else System.out.println("Quotient = " + num/den);

error check
for quadratic

formula

double discriminant = b*b - 4.0*c;
if (discriminant < 0.0)
{
 System.out.println("No real roots");
}
else
{
 System.out.println((-b + Math.sqrt(discriminant))/2.0);
 System.out.println((-b - Math.sqrt(discriminant))/2.0);
}

Typical examples of using if statements

!"#$%&'(')!"*+,,,-9 ./01/23,,,0425,67

491.3 Conditionals and Loops

% java Flip
Heads
% java Flip
Tails
% java Flip
Tails

While loops Many computations are inherently repetitive. The basic Java con-
struct for handling such computations has the following format:

while (<boolean expression>) { <statements> }

The while statement has the same form as the if statement (the only difference be-
ing the use of the keyword while instead of if), but the meaning is quite different.
It is an instruction to the computer to behave as follows: if the expression is false,
do nothing; if the expression is true, execute the sequence of statements (just as
with if) but then check the expression again, execute the sequence of statements
again if the expression is true, and continue as long as the expression is true. We
often refer to the statement block in a loop as the body of the loop. As with the if
statement, the braces are optional if a while loop body has just one statement.
The while statement is equivalent to a sequence of identical if statements:

Program 1.3.1 Flipping a fair coin

public class Flip
{
 public static void main(String[] args)
 { // Simulate a coin flip.
 if (Math.random() < 0.5) System.out.println("Heads");
 else System.out.println("Tails");
 }
}

This program uses Math.random() to simulate a coin flip. Each time you run it, it prints either
heads or tails. A sequence of flips will have many of the same properties as a sequence that you
would get by flipping a fair coin, but it is not a truly random sequence.

!"#$%&'(')!"*+,,,-3 ./01/23,,,0425,67

50 Elements of Programming

if (<boolean expression>) { <statements> }
if (<boolean expression>) { <statements> }
if (<boolean expression>) { <statements> }
...

At some point, the code in one of the statements must
change something (such as the value of some variable in
the boolean expression) to make the boolean expression
false, and then the sequence is broken.

A common programming paradigm involves main-
taining an integer value that keeps track of the number of
times a loop iterates. We start at some initial value, and then increment the value
by 1 each time through the loop, testing whether it exceeds a predetermined maxi-

mum before deciding to continue. TenHellos
(PROGRAM 1.3.2) is a simple example of this para-
digm that uses a while statement. The key to the
computation is the statement

i = i + 1;

As a mathematical equation, this statement is
nonsense, but as a Java assignment statement it
makes perfect sense: it says to compute the value
i + 1 and then assign the result to the variable i.
If the value of i was 4 before the statement, it be-
comes 5 afterwards; if it was 5 it becomes 6; and
so forth. With the initial condition in TenHellos
that the value of i starts at 4, the statement block
is executed five times until the sequence is bro-
ken, when the value of i becomes 11.

Using the while loop is barely worthwhile for this simple task, but you will
soon be addressing tasks where you will need to specify that statements be repeated
far too many times to contemplate doing it without loops. There is a profound
difference between programs with while statements and programs without them,
because while statements allow us to specify a potentially unlimited number of
statements to be executed in a program. In particular, the while statement allows
us to specify lengthy computations in short programs. This ability opens the door
to writing programs for tasks that we could not contemplate addressing without a

int i = 4;
while (i <= 10)
{
 System.out.println(i + "th Hello");
 i = i + 1;
}

Flowchart example (while statement)

i <= 10 ?

i = 4;

no

yes

System.out.println(i + "th Hello");

i = i + 1;

loop
continuation

condition

Anatomy of a while loop

initialization is a
separate statement

int v = 1;
while (v <= N/2)

braces are
optional

when body
is a single
statement

body

{
 v = 2*v;
}

!"#$%&'(')!"*+,,,52 ./01/23,,,0425,67

511.3 Conditionals and Loops

% java TenHellos
1st Hello
2nd Hello
3rd Hello
4th Hello
5th Hello
6th Hello
7th Hello
8th Hello
9th Hello
10th Hello

Program 1.3.2 Your first while loop

public class TenHellos
{
 public static void main(String[] args)
 { // Print 10 Hellos.
 System.out.println("1st Hello");
 System.out.println("2nd Hello");
 System.out.println("3rd Hello");
 int i = 4;
 while (i <= 10)
 { // Print the ith Hello.
 System.out.println(i + "th Hello");
 i = i + 1;
 }
 }
}

This program uses a while loop for the simple, repetitive task of printing the output shown
below. After the third line, the lines to be printed differ only in the value of the index counting
the line printed, so we define a variable i to contain that index. After initializing the value of
i to 4, we enter into a while loop where we use the value of i in the System.out.println()
statement and increment it each time through the loop. After printing 10th Hello, the value
of i becomes 11 and the loop terminates.

i i <= 10 output

4 true 4th Hello

5 true 5th Hello

6 true 6th Hello

7 true 7th Hello

8 true 8th Hello

9 true 9th Hello

10 true 10th Hello

11 false

Trace of java TenHellos

!"#$%&'(')!"*+,,,5: ./01/23,,,0425,67

52 Elements of Programming

computer. But there is also a price to pay: as your pro-
grams become more sophisticated, they become more
difficult to understand.

PowersOfTwo (PROGRAM 1.3.3) uses a while loop
to print out a table of the powers of 2. Beyond the loop
control counter i, it maintains a variable v that holds
the powers of two as it computes them. The loop body
contains three statements: one to print the current
power of 2, one to compute the next (multiply the cur-
rent one by 2), and one to increment the loop control
counter.

There are many situations in computer science
where it is useful to be familiar with powers of 2. You
should know at least the first 10 values in this table
and you should note that 210 is about 1 thousand, 220 is
about 1 million, and 230 is about 1 billion.

PowersOfTwo is the prototype for many use-
ful computations. By varying the computations that
change the accumulated value and the way that the
loop control variable is incremented, we can print out
tables of a variety of functions (see EXERCISE 1.3.11).

It is worthwhile to carefully examine the behav-
ior of programs that use loops by studying a trace of
the program. For example, a trace of the operation of
PowersOfTwo should show the value of each variable
before each iteration of the loop and the value of the
conditional expression that controls the loop. Trac-
ing the operation of a loop can be very tedious, but it
is nearly always worthwhile to run a trace because it
clearly exposes what a program is doing.

PowersOfTwo is nearly a self-tracing program,
because it prints the values of its variables each time
through the loop. Clearly, you can make any program
produce a trace of itself by adding appropriate System.
out.println() statements. Modern programming en-
vironments provide sophisticated tools for tracing, but

i v i <= N

0 1 true

1 2 true

2 4 true

3 8 true

4 16 true

5 32 true

6 64 true

7 128 true

8 256 true

9 512 true

10 1024 true

11 2048 true

12 4096 true

13 8192 true

14 16384 true

15 32768 true

16 65536 true

17 131072 true

18 262144 true

19 524288 true

20 1048576 true

21 2097152 true

22 4194304 true

23 8388608 true

24 16777216 true

25 33554432 true

26 67108864 true

27 134217728 true

28 268435456 true

29 536870912 true

30 1073741824 false

Trace of java PowersOfTwo 29

!"#$%&'(')!"*+,,,50 ./01/23,,,0425,67

531.3 Conditionals and Loops

this tried-and-true method is simple and effective. You certainly should add print
statements to the first few loops that you write, to be sure that they are doing pre-
cisely what you expect.

There is a hidden trap in PowersOfTwo, because the largest integer in Java’s
int data type is 231 - 1 and the program does not test for that possibility. If you

% java PowersOfTwo 29
0 1
1 2
2 4
...
27 134217728
28 268435456
29 536870912

% java PowersOfTwo 5
0 1
1 2
2 4
3 8
4 16
5 32

Program 1.3.3 Computing powers of two

public class PowersOfTwo
{
 public static void main(String[] args)
 { // Print the first N powers of 2.
 int N = Integer.parseInt(args[0]);
 int v = 1;
 int i = 0;
 while (i <= N)
 { // Print ith power of 2.
 System.out.println(i + " " + v);
 v = 2 * v;
 i = i + 1;
 }
 }
}

This program takes a command-line argument N and prints a table of the powers of 2 that are
less than or equal to 2N. Each time through the loop, we increment the value of i and double
the value of v. We show only the first three and the last three lines of the table; the program
prints N+1 lines.

N loop termination value

i loop control counter

v current power of 2

!"#$%&'(')!"*+,,,5. ./01/23,,,0425,67

54 Elements of Programming

invoke it with java PowersOfTwo 31, you may be surprised by the last line of
output:

...
1073741824
-2147483648

The variable v becomes too large and takes on a negative value because of the way
Java represents integers. The maximum value of an int is available for us to use as
Integer.MAX_VALUE. A better version of PROGRAM 1.3.3 would use this value to test
for overflow and print an error message if the user types too large a value, though
getting such a program to work properly for all inputs is trickier than you might
think. (For a similar challenge, see EXERCISE 1.3.14.)

As a more complicated example, suppose that we
want to compute the largest power of two that is less
than or equal to a given positive integer N. If N is 13 we
want the result 8; if N is 1000, we want the result 512; if N
is 64, we want the result 64; and so forth. This computa-
tion is simple to perform with a while loop:

int v = 1;
while (v <= N/2)
 v = 2*v;

It takes some thought to convince yourself that this sim-
ple piece of code produces the desired result. You can do
so by making these observations:

v is always a power of 2.
v is never greater than N.
v increases each time through the loop, so the loop
must terminate.
After the loop terminates, 2*v is greater than N.

Reasoning of this sort is often important in understanding how while loops work.
Even though many of the loops you will write are much simpler than this one, you
should be sure to convince yourself that each loop you write is going to behave as
you expect.

The logic behind such arguments is the same whether the loop iterates just
a few times, as in TenHellos, dozens of times, as in PowersOfTwo, or millions of
times, as in several examples that we will soon consider. That leap from a few tiny
cases to a huge computation is profound. When writing loops, understanding how

v <= N/2 ?

int v = 1;

int v = 1;
while (v <= N/2)
 v = 2*v;

Flowchart for the statements

no

yes

v = 2*v;

!"#$%&'(')!"*+,,,5- ./01/23,,,0425,67

551.3 Conditionals and Loops

the values of the variables change each time through the loop (and checking that
understanding by adding statements to trace their values and running for a small
number of iterations) is essential. Having done so, you can confidently remove
those training wheels and truly unleash the power of the computer.

For loops As you will see, the while loop allows us to write programs for all
manner of applications. Before considering more examples, we will look at an al-
ternate Java construct that allows us even more flexibility when writing programs
with loops. This alternate notation is not fundamentally different from the basic
while loop, but it is widely used because it often allows us to write more compact
and more readable programs than if we used only while statements.

For notation. Many loops follow this scheme: initialize an index variable to some
value and then use a while loop to test a loop continuation condition involving
the index variable, where the last statement in the while loop increments the index
variable. You can express such loops directly with Java’s for notation:

for (<initialize>; <boolean expression>; <increment>)
{
 <statements>
}

This code is, with only a few exceptions, equivalent to

<initialize>;
while (<boolean expression>)
{
 <statements>
 <increment>;
}

Your Java compiler might even produce identical results for the two loops. In truth,
<initialize> and <increment> can be any statements at all, but we nearly always
use for loops to support this typical initialize-and-increment programming idiom.
For example, the following two lines of code are equivalent to the corresponding
lines of code in TenHellos (PROGRAM 1.3.2):

for (int i = 4; i <= 10; i = i + 1)
 System.out.println(i + "th Hello");

!"#$%&'(')!"*+,,,55 ./01/23,,,0425,67

56 Elements of Programming

Typically, we work with a slightly more compact version of this code, using the
shorthand notation discussed next.

Compound assignment idioms. Modifying the value of a variable is something
that we do so often in programming that Java provides a variety of different short-
hand notations for the purpose. For example, the following four statements all in-
crement the value of i by 1 in Java:

i = i + 1; i++; ++i; i += 1;

You can also say i-- or --i or i -= 1 or i = i-1 to decrement that value of i by 1.
Most programmers use i++ or i-- in for loops, though any of the others would do.
The ++ and -- constructs are normally used for integers, but the compound assign-
ment constructs are useful operations for any arithmetic operator in any primitive
numeric type. For example, you can say v *= 2 or v += v instead of v = 2*v. All
of these idioms are for notational convenience, nothing more. This combination of
shortcuts came into widespread use with the C programming language in the 1970s
and have become standard. They have survived the test of time because they lead to
compact, elegant, and easily understood programs. When you learn to write (and
to read) programs that use them, you will be able to transfer that skill to program-
ming in numerous modern languages, not just Java.

Scope. The scope of a variable is the part of the program where it is defined. Gen-
erally the scope of a variable is comprised of the statements that follow the decla-
ration in the same block as the declaration. For this purpose, the code in the for
loop header is considered to be in the same block as the for loop body. Therefore,
the while and for formulations of loops are not quite equivalent: in a typical for
loop, the incrementing variable is not available for use in later statements; in the
corresponding while loop, it is. This distinction is often a reason to use a while
instead of a for loop.

CHOOSING AMONG DIFFERENT FORMULATIONS OF THE same computation is a matter of
each programmer’s taste, as when a writer picks from among synonyms or chooses
between using active and passive voice when composing a sentence. You will not
find good hard-and-fast rules on how to compose a program any more than you
will find such rules on how to compose a paragraph. Your goal should be to find a
style that suits you, gets the computation done, and can be appreciated by others.

!"#$%&'(')!"*+,,,58 ./01/23,,,0425,67

571.3 Conditionals and Loops

The accompanying table includes
several code fragments with typical
examples of loops used in Java code.
Some of these relate to code that you
have already seen; others are new code
for straightforward computations. To
cement your understanding of loops
in Java, put these code snippets into a
class’s code that takes an integer N from
the command line (like PowersOfTwo)
and compile and run them. Then, write
some loops of your own for similar computations of your own invention, or do
some of the early exercises at the end of this section. There is no substitute for the
experience gained by running code that you create yourself, and it is imperative
that you develop an understanding of how to write Java code that uses loops.

print largest power of two
less than or equal to N

int v = 1;
while (v <= N/2)
 v = 2*v;
System.out.println(v);

compute a finite sum
(1 + 2 + . . . + N)

int sum = 0;
for (int i = 1; i <= N; i++)
 sum += i;
System.out.println(sum);

compute a finite product
(N ! = 1 × 2 × . . . × N)

int product = 1;
for (int i = 1; i <= N; i++)
 product *= i;
System.out.println(product);

print a table of
function values

for (int i = 0; i <= N; i++)
 System.out.println(i + " " + 2*Math.PI*i/N);

print the ruler function
(see Program 1.2.1)

String ruler = " ";
for (int i = 1; i <= N; i++)
 ruler = ruler + i + ruler;
System.out.println(ruler);

Typical examples of using for and while statements

loop
continuation

condition

Anatomy of a for loop (that prints powers of 2)

initialize another
variable in a

separate
statement

declare and initialize
a loop control variable

increment
int v = 1;
for (int i = 0; i <= N; i++)

body

{
 System.out.println(i + " " + v);
 v = 2*v;
}

!"#$%&'(')!"*+,,,51 ./01/23,,,0425,67

58 Elements of Programming

Nesting The if, while, and for statements have the same status as assignment
statements or any other statements in Java. That is, we can use them whenever a
statement is called for. In particular, we can use one or more of them in the <body>
of another to make compound statements. As a first example, DivisorPattern
(PROGRAM 1.3.4) has a for loop whose statements are a for loop (whose statement
is an if statement) and a print statement. It prints a pattern of asterisks where the
i th row has an asterisk in each position corresponding to divisors of i (the same
holds true for the columns).

To emphasize the nesting, we use indentation in the program code. We refer
to the i loop as the outer loop and the j loop as the inner loop. The inner loop iter-
ates all the way through for each iteration of the outer loop. As usual, the best way
to understand a new programming construct like this is to study a trace.

DivisorPattern has a complicated control structure, as you can see from its
flowchart. A diagram like this illustrates the importance of using a limited num-
ber of simple control structures in programming. With nesting, you can compose
loops and conditionals to build programs that are easy to understand even though
they may have a complicated control structure. A great many useful computations
can be accomplished with just one or two levels of nesting. For example, many pro-
grams in this book have the same general structure as DivisorPattern.

i <= N ?

i = 1;

Flowchart for DivisorPattern

no

yes

j <= N ?

j = 1;

yes

j++;

no
i++;

(i % j == 0) || (j % i == 0) ?

System.out.print("* ");

noyes

System.out.print(" ");

System.out.println(i);

!"#$%&'(')!"*+,,,59 ./01/23,,,0425,67

591.3 Conditionals and Loops

% java DivisorPattern 3
* * * 1
* * 2
* * 3

% java DivisorPattern 16
* * * * * * * * * * * * * * * * 1
* * * * * * * * * 2
* * * * * * 3
* * * * * * 4
* * * * 5
* * * * * 6
* * * 7
* * * * * 8
* * * 9
* * * * 10
* * 11
* * * * * * 12
* * 13
* * * * 14
* * * * 15
* * * * * 16

Program 1.3.4 Your first nested loops

public class DivisorPattern
{
 public static void main(String[] args)
 { // Print a square that visualizes divisors.
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 { // Print the ith line
 for (int j = 1; j <= N; j++)
 { // Print the jth entry in the ith line.
 if ((i % j == 0) || (j % i == 0))
 System.out.print("* ");
 else
 System.out.print(" ");
 }
 System.out.println(i);
 }
 }
}

This program takes an integer N as the command-line argument and uses nested for loops to
print an N-by-N table with an asterisk in row i and column j if either i divides j or j divides
i. The loop control variables i and j control the computation.

N
number of rows
and columns

i row index

j column index

i j i % j j % i output

1 1 0 0 *

1 2 1 0 *

1 3 1 0 *

1

2 1 0 1 *

2 2 0 0 *

2 3 2 1

2

3 1 0 1 *

3 2 1 2

3 3 0 0 *

3

Trace of java DivisorPattern 3

!"#$%&'(')!"*+,,,53 ./01/23,,,0425,67

60 Elements of Programming

As a second example of nesting, consider the following program fragment,
which a tax preparation program might use to compute income tax rates:

if (income < 0) rate = 0.0;
else if (income < 47450) rate = .22;
else if (income < 114650) rate = .25;
else if (income < 174700) rate = .28;
else if (income < 311950) rate = .33;
else rate = .35;

In this case, a number of if statements are nested to test from among a number
of mutually exclusive possibilities. This construct is a special one that we use often.
Otherwise, it is best to use braces to resolve ambiguities when nesting if state-
ments. This issue and more examples are addressed in the Q&A and exercises.

Applications The ability to program with loops immediately opens up the full
world of computation. To emphasize this fact, we next consider a variety of exam-
ples. These examples all involve working with the types of data that we considered
in SECTION 1.2, but rest assured that the same mechanisms serve us well for any
computational application. The sample programs are carefully crafted, and by
studying and appreciating them, you will be prepared to write your own programs
containing loops, as requested in many of the exercises at the end of this section.

The examples that we consider here involve computing with numbers. Sev-
eral of our examples are tied to problems faced by mathematicians and scientists
throughout the past several centuries. While computers have existed for only 50
years or so, many of the computational methods that we use are based on a rich
mathematical tradition tracing back to antiquity.

Finite sum. The computational paradigm used by PowersOfT-
wo is one that you will use frequently. It uses two variables—one
as an index that controls a loop and the other to accumulate a
computational result. Harmonic (PROGRAM 1.3.5) uses the same
paradigm to evaluate the finite sum HN = 1 + 1/2 + 1/3 + ... +
1/N . These numbers, which are known as the Harmonic num-
bers, arise frequently in discrete mathematics. Harmonic numbers are the discrete
analog of the logarithm. They also approximate the area under the curve y = 1/x.
You can use PROGRAM 1.3.5 as a model for computing the values of other sums (see
EXERCISE 1.3.16).

1/2

1

1/3
1/4

1/5

!"#$%&'(')!"*+,,,82 ./01/23,,,0425,67

611.3 Conditionals and Loops

Computing the square root. How are functions in Java’s Math li-
brary, such as Math.sqrt(), implemented? Sqrt (PROGRAM 1.3.6)
illustrates one technique. To compute the square root function, it
uses an iterative computation that was known to the Babylonians
over 4,000 years ago. It is also a special case of a general com-
putational technique that was developed in the 17th century by
Isaac Newton and Joseph Raphson and is widely known as New-
ton’s method. Under generous conditions on a given function f (x),
Newton’s method is an effective way to find roots (values of x for
which the function is 0). Start with an initial estimate, t0. Given the

% java Harmonic 2
1.5
% java Harmonic 10
2.9289682539682538
% java Harmonic 10000
9.787606036044348

Program 1.3.5 Harmonic numbers

public class Harmonic
{
 public static void main(String[] args)
 { // Compute the Nth Harmonic number.
 int N = Integer.parseInt(args[0]);
 double sum = 0.0;
 for (int i = 1; i <= N; i++)
 { // Add the ith term to the sum
 sum += 1.0/i;
 }
 System.out.println(sum);
 }
}

This program computes the value of the Nth Harmonic number. The value is known from math-
ematical analysis to be about ln(N) + 0.57721 for large N. Note that ln(10000) ! 9.21034.

N number of terms in sum

i loop index

sum cumulated sum

y = f(x)

root

t
i+2

t
i+1

t
i

Newton’s method

!"#$%&'(')!"*+,,,8: ./01/23,,,0425,67

62 Elements of Programming

% java Sqrt 2.0
1.414213562373095
% java Sqrt 2544545
1595.1630010754388

estimate ti , compute
a new estimate by
drawing a line tan-
gent to the curve y
= f (x) at the point (ti , f (ti)) and set ti+1 to the x-coordinate of the point where that
line hits the x-axis. Iterating this process, we get closer to the root.

Computing the square root of a positive number c is equivalent to finding the
positive root of the function f (x) = x 2 - c. For this special case, Newton’s method
amounts to the process implemented in Sqrt (see EXERCISE 1.3.17). Start with the
estimate t = c. If t is equal to c /t, then t is equal to the square root of c, so the com-
putation is complete. If not, refine the estimate by replacing t with the average of t

Program 1.3.6 Newton’s method

public class Sqrt
{
 public static void main(String[] args)
 {
 double c = Double.parseDouble(args[0]);
 double epsilon = 1e-15;
 double t = c;
 while (Math.abs(t - c/t) > epsilon * t)
 { // Replace t by the average of t and c/t.
 t = (c/t + t) / 2.0;
 }
 System.out.println(t);
 }
}

This program computes the square root of its command-line argument to 15 decimal places of
accuracy, using Newton’s method (see text).

c argument
epsilon error tolerance

t estimate of c

iteration t c/t

2.0000000000000000 1.0

1 1.5000000000000000 1.3333333333333333

2 1.4166666666666665 1.4117647058823530

3 1.4142156862745097 1.4142114384748700

4 1.4142135623746899 1.4142135623715002

5 1.4142135623730950 1.4142135623730951

Trace of java Sqrt 2.0

!"#$%&'(')!"*+,,,80 ./01/23,,,0425,67

631.3 Conditionals and Loops

and c/t. With Newton’s method, we get the value of the
square root of 2 accurate to 15 places in just 5 iterations
of the loop.

Newton’s method is important in scientific com-
puting because the same iterative approach is effec-
tive for finding the roots of a broad class of functions,
including many for which analytic solutions are not
known (so the Java Math library would be no help).
Nowadays, we take for granted that we can find what-
ever values we need of mathematical functions; before
computers, scientists and engineers had to use tables or
computed values by hand. Computational techniques
that were developed to enable calculations by hand
needed to be very efficient, so it is not surprising that
many of those same techniques are effective when we
use computers. Newton’s method is a classic example of
this phenomenon. Another useful approach for evalu-
ating mathematical functions is to use Taylor series ex-
pansions (see EXERCISES 1.3.35–36).

Number conversion. Binary (PROGRAM 1.3.7) prints
the binary (base 2) representation of the decimal num-
ber typed as the command-line argument. It is based on
decomposing a number into a sum of powers of two.
For example, the binary representation of 19 is 10011,
which is the same as saying that 19 = 16 + 2 + 1. To
compute the binary representation of N, we consider the
powers of 2 less than or equal to N in decreasing order
to determine which belong in the binary decomposi-
tion (and therefore correspond to a 1 bit in the binary
representation). The process corresponds precisely to
using a balance scale to weigh an object, using weights
whose values are powers of two. First, we find largest
weight not heavier than the object. Then, considering
the weights in decreasing order, we add each weight to
test whether the object is lighter. If so, we remove the Scale analog to binary conversion

16
>16

<24

<20

>18

=19

16 8

16 4

16 2

16 21

10???

less than 16 + 8

1????

greater than 16

100??

less than 16 4

1001?

greater than 16 2

10011

 10000+10+1 = 10011

equal to 16 + 2 + 1

!"#$%&'(')!"*+,,,8. ./01/23,,,0425,67

64 Elements of Programming

% java Binary 19
10011
% java Binary 100000000
101111101011110000100000000

Program 1.3.7 Converting to binary

public class Binary
{
 public static void main(String[] args)
 { // Print binary representation of N.
 int N = Integer.parseInt(args[0]);
 int v = 1;
 while (v <= N/2)
 v = 2*v;
 // Now v is the largest power of 2 <= N.

 int n = N;
 while (v > 0)
 { // Cast out powers of 2 in decreasing order.
 if (n < v) { System.out.print(0); }
 else { System.out.print(1); n -= v; }
 v = v/2;
 }
 System.out.println();
 }
}

This program prints the binary representation of a positive integer given as the command-line
argument, by casting out powers of 2 in decreasing order (see text).

N integer to convert
v current power of 2

n current excess

weight; if not, we leave the weight and try the next one. Each weight corresponds to
a bit in the binary representation of the weight of the object: leaving a weight corre-
sponds to a 1 bit in the binary representation of the object’s weight, and removing a
weight corresponds to a 0 bit in the binary representation of the object’s weight.

In Binary, the variable v corresponds to the current weight being tested, and
the variable n accounts for the excess (unknown) part of the object’s weight (to

!"#$%&'(')!"*+,,,8- ./01/23,,,0425,67

651.3 Conditionals and Loops

simulate leaving a weight on the balance, we just subtract that weight from n). The
value of v decreases through the powers of two. When it is larger than n, Binary
prints 0; otherwise, it prints 1 and subtracts v from n. As usual, a trace (of the val-
ues of n, v, n < v, and the output bit for each loop iteration) can be very useful in
helping you to understand the program. Read from top to bottom in the rightmost
column of the trace, the output is 10011, the binary representation of 19.

Converting data from one representation to another is a frequent theme in
writing computer programs. Thinking about conversion emphasizes the distinc-
tion between an abstraction (an integer like the number of hours in a day) and a
representation of that abstraction (24 or 11000). The irony here is that the com-
puter’s representation of an integer is actually based on its binary representation.

Simulation. Our next example is different in char-
acter from the ones we have been considering, but
it is representative of a common situation where we
use computers to simulate what might happen in
the real world so that we can make informed deci-
sions. The specific example that we consider now is
from a thoroughly studied class of problems known
as gambler’s ruin. Suppose that a gambler makes a
series of fair $1 bets, starting with some given ini-
tial stake. The gambler always goes broke eventually,
but when we set other limits on the game, various
questions arise. For example, suppose that the gam- Gambler simulation sequences

goal

stake

0

goal
win

stake

0

n binary
representation

v v > 0 binary
representation

n < v output

19 10011 16 true 10000 false 1

3 0011 8 true 1000 true 0

3 011 4 true 100 true 0

3 01 2 true 10 false 1

1 1 1 true 1 false 1

0 0 false

Trace of casting-out-powers-of-two loop for java Binary 19

!"#$%&'(')!"*+,,,85 ./01/23,,,0425,67

66 Elements of Programming

% java Gambler 10 20 1000
50% wins
Avg # bets: 100
% java Gambler 50 250 100
19% wins
Avg # bets: 11050
% java Gambler 500 2500 100
21% wins
Avg # bets: 998071

Program 1.3.8 Gambler’s ruin simulation

public class Gambler
{
 public static void main(String[] args)
 { // Run T experiments that start with $stake
 // and terminate on $0 or $goal.
 int stake = Integer.parseInt(args[0]);
 int goal = Integer.parseInt(args[1]);
 int T = Integer.parseInt(args[2]);
 int bets = 0;
 int wins = 0;
 for (int t = 0; t < T; t++)
 { // Run one experiment.
 int cash = stake;
 while (cash > 0 && cash < goal)
 { // Simulate one bet.
 bets++;
 if (Math.random() < 0.5) cash++;
 else cash--;
 } // Cash is either 0 (ruin) or $goal (win).
 if (cash == goal) wins++;
 }
 System.out.println(100*wins/T + "% wins");
 System.out.println("Avg # bets: " + bets/T);
 }
}

The inner while loop in this program simulates a gambler with $stake who makes a series
of $1 bets, continuing until going broke or reaching $goal. The running time of this program
is proportional to T times the average number of bets. For example, the third command below
causes nearly 100 million random numbers to be generated.

stake initial stake
goal walkaway goal

T number of trials

bets bet count

wins win count

cash cash on hand

!"#$%&'(')!"*+,,,88 ./01/23,,,0425,67

671.3 Conditionals and Loops

bler decides ahead of time to walk away after reaching a certain goal. What are the
chances that the gambler will win? How many bets might be needed to win or lose
the game? What is the maximum amount of money that the gambler will have dur-
ing the course of the game?

Gambler (PROGRAM 1.3.8) is a simulation that can help answer these ques-
tions. It does a sequence of trials, using Math.random() to simulate the sequence
of bets, continuing until the gambler is broke or the goal is reached, and keeping
track of the number of wins and the number of bets. After running the experiment
for the specified number of trials, it averages and prints out the results. You might
wish to run this program for various values of the command-line arguments, not
necessarily just to plan your next trip to the casino, but to help you think about the
following questions: Is the simulation an accurate reflection of what would hap-
pen in real life? How many trials are needed to get an accurate answer? What are
the computational limits on performing such a simulation? Simulations are widely
used in applications in economics, science, and engineering, and questions of this
sort are important in any simulation.

In the case of Gambler, we are verifying classical results from probability the-
ory, which say the probability of success is the ratio of the stake to the goal and that the
expected number of bets is the product of the stake and the desired gain (the difference
between the goal and the stake). For example, if you want to go to Monte Carlo to
try to turn $500 into $2,500, you have a reasonable (20%) chance of success, but
you should expect to make a million $1 bets! If you try to turn $1 into $1,000, you
have a .1% chance and can expect to be done (ruin, most likely) in about 999 bets.

Simulation and analysis go hand-in-hand, each validating the other. In prac-
tice, the value of simulation is that it can suggest answers to questions that might
be too difficult to resolve with analysis. For example, suppose that our gambler,
recognizing that there will never be enough time to make a million bets, decides
ahead of time to set an upper limit on the number of bets. How much money can
the gambler expect to take home in that case? You can address this question with
an easy change to PROGRAM 1.3.8 (see EXERCISE 1.3.24), but addressing it with math-
ematical analysis is not so easy.

!"#$%&'(')!"*+,,,81 ./01/23,,,0425,67

68 Elements of Programming

Factoring. A prime is an integer greater than one whose only positive divisors are
one and itself. The prime factorization of an integer is the multiset of primes whose
product is the integer. For example, 3757208 = 2*2*2*7*13*13*397. Factors
(PROGRAM 1.3.9) computes the prime factorization of any given positive integer. In
contrast to many of the other programs that we have seen (which we could do in a

few minutes with a calculator or even a pencil and paper),
this computation would not be feasible without a comput-
er. How would you go about trying to find the factors of
a number like 287994837222311? You might find the fac-
tor 17 quickly, but even with a calculator it would take you
quite a while to find 1739347.

Although Factors is compact and straightforward,
it certainly will take some thought to for you to convince
yourself that it produces the desired result for any given in-
teger. As usual, following a trace that shows the values of the
variables at the beginning of each iteration of the outer for
loop is a good way to understand the computation. For the
case where the initial value of N is 3757208, the inner while
loop iterates three times when i is 2, to remove the three
factors of 2; then zero times when i is 3, 4, 5, and 6, since
none of those numbers divide 469651; and so forth. Trac-
ing the program for a few example inputs clearly reveals its
basic operation. To convince ourselves that the program will
behave as expected for all inputs, we reason about what we
expect each of the loops to do. The while loop clearly prints
and removes from n all factors of i, but the key to under-
standing the program is to see that the following fact holds
at the beginning of each iteration of the for loop: n has no
factors between 2 and i-1. Thus, if i is not prime, it will not
divide n; if i is prime, the while loop will do its job. Once

we know that n has no factors less than or equal to i, we also know that it has no
factors greater than n/i, so we need look no further when i is greater than n/i.

In a more naïve implementation, we might simply have used the condition (i
< n) to terminate the for loop. Even given the blinding speed of modern comput-
ers, such a decision would have a dramatic effect on the size of the numbers that
we could factor. EXERCISE 1.3.26 encourages you to experiment with the program to

i N output

2 3757208 2 2 2

3 469651

4 469651

5 469651

6 469651

7 469651 7

8 67093

9 67093

10 67093

11 67093

12 67093

13 67093 13 13

14 397

15 397

16 397

17 397

18 397

19 397

20 397

397

Trace of java Factors 3757208

!"#$%&'(')!"*+,,,89 ./01/23,,,0425,67

691.3 Conditionals and Loops

learn the effectiveness of this simple change. On a computer that can do billions
of operations per second, we could factor numbers on the order of 109 in a few
seconds; with the (i <= n/i) test we can factor numbers on the order of 1018 in a
comparable amount of time. Loops give us the ability to solve difficult problems,
but they also give us the ability to construct simple programs that run slowly, so we
must always be cognizant of performance.

In modern applications in cryptography, there are important situations where
we wish to factor truly huge numbers (with, say, hundreds or thousands of digits).
Such a computation is prohibitively difficult even with the use of a computer.

% java Factors 3757208
2 2 2 7 13 13 397

Program 1.3.9 Factoring integers

public class Factors
{
 public static void main(String[] args)
 { // Print the prime factors of N.
 long N = Long.parseLong(args[0]);
 long n = N;
 for (long i = 2; i <= n/i; i++)
 { // Test whether i is a factor.
 while (n % i == 0)
 { // Cast out and print i factors.
 n /= i;
 System.out.print(i + " ");
 } // Any factors of n are greater than i.
 }
 if (n > 1) System.out.print(n);
 System.out.println();
 }
}

This program prints the prime factorization of any positive integer in Java’s long data type. The
code is simple, but it takes some thought to convince oneself that it is correct (see text).

N integer to factor
n unfactored part

i potential factor

% java Factors 287994837222311
17 1739347 9739789

!"#$%&'(')!"*+,,,83 ./01/23,,,0425,67

70 Elements of Programming

Other conditional and loop constructs To more fully cover the Java lan-
guage, we consider here four more control-flow constructs. You need not think
about using these constructs for every program that you write, because you are
likely to encounter them much less frequently than the if, while, and for state-
ments. You certainly do not need to worry about using these constructs until you
are comfortable using if, while, and for. You might encounter one of them in a
program in a book or on the web, but many programmers do not use them at all
and we do not use any of them outside this section.

Break statement. In some situations, we want to immediately exit a loop without
letting it run to completion. Java provides the break statement for this purpose.
For example, the following code is an effective way to test whether a given integer
N>1 is prime:

int i;
for (i = 2; i <= N/i; i++)
 if (N % i == 0) break;
if (i > N/i) System.out.println(N + " is prime");

There are two different ways to leave this loop: either the break statement is ex-
ecuted (because i divides N, so N is not prime) or the for loop condition is not
satisfied (because no i with i <= N/i was found that divides N, which implies that
N is prime). Note that we have to declare i outside the for loop instead of in the
initialization statement so that its scope extends beyond the loop.

Continue statement. Java also provides a way to skip to the next iteration of a
loop: the continue statement. When a continue is executed within a loop body,
the flow of control transfers directly to the increment statement for the next itera-
tion of the loop.

Switch statement. The if and if-else statements allow one or two alternatives
in directing the flow of control. Sometimes, a computation naturally suggests more
than two mutually exclusive alternatives. We could use a sequence or a chain of
if-else statements, but the Java switch statement provides a direct solution. Let
us move right to a typical example. Rather than printing an int variable day in a
program that works with days of the weeks (such as a solution to EXERCISE 1.2.29),
it is easier to use a switch statement, as follows:

!"#$%&'(')!"*+,,,12 ./01/23,,,0425,67

711.3 Conditionals and Loops

switch (day)
{
 case 0: System.out.println("Sun"); break;
 case 1: System.out.println("Mon"); break;
 case 2: System.out.println("Tue"); break;
 case 3: System.out.println("Wed"); break;
 case 4: System.out.println("Thu"); break;
 case 5: System.out.println("Fri"); break;
 case 6: System.out.println("Sat"); break;
}

When you have a program that seems to have a long and regular sequence of if
statements, you might consider consulting the booksite and using a switch state-
ment, or using an alternate approach described in SECTION 1.4.

Do-while loop. Another way to write a loop is to use the template

do { <statements> } while (<boolean expression>);

The meaning of this statement is the same as

while (<boolean expression>) { <statements> }

except that the first test of the condition is omitted. If the condition initially holds,
there is no difference. For an example in which do-while is useful, consider the
problem of generating points that are randomly distributed in the unit disk. We
can use Math.random() to generate x and y coordinates independently to get points
that are randomly distributed in the 2-by-2 square centered on the origin. Most
points fall within the unit disk, so we just reject those that do not. We always want
to generate at least one point, so a do-while loop is ideal for this computation. The
following code sets x and y such that the point (x, y) is randomly distributed in the
unit disk:

do
{ // Scale x and y to be random in (-1, 1).
 x = 2.0*Math.random() - 1.0;
 y = 2.0*Math.random() - 1.0;
} while (Math.sqrt(x*x + y*y) > 1.0);

Since the area of the disk is # and the area of the square is 4, the
expected number of times the loop is iterated is 4/# (about 1.27).

x

y

in

(0, 0)

(1, 1)

out

!"#$%&'(')!"*+,,,1: ./01/23,,,0425,67

72 Elements of Programming

Infinite loops Before you write programs that use loops, you need to think
about the following issue: what if the loop-continuation condition in a while loop
is always satisfied? With the statements that you have learned so far, one of two bad
things could happen, both of which you need to learn to cope with.

First, suppose that such a loop calls System.out.println(). For example, if
the condition in TenHellos were (i > 3) instead of (i <= 10), it would always
be true. What happens? Nowadays, we use print as an abstraction to mean display
in a terminal window and the result of attempting to display an unlimited number
of lines in a terminal window is dependent on operating-system conventions. If

your system is set up to have print mean print characters on
a piece of paper, you might run out of paper or have to un-
plug the printer. In a terminal window, you need a stop printing
operation. Before running programs with loops on your own,
you make sure that you know what to do to “pull the plug” on
an infinite loop of System.out.println() calls and then test
out the strategy by making the change to TenHellos indicated
above and trying to stop it. On most systems, <ctrl-c> means
stop the current program, and should do the job.

Second, nothing might happen. If your program has an
infinite loop that does not produce any output, it will spin
through the loop and you will see no results at all. When you
find yourself in such a situation, you can inspect the loops to
make sure that the loop exit condition always happens, but the
problem may not be easy to identify. One way to locate such
a bug is to insert calls to System.out.println() to produce
a trace. If these calls fall within an infinite loop, this strategy
reduces the problem to the case discussed in the previous para-
graph, but the output might give you a clue about what to do.

You might not know (or it might not matter) whether a loop is infinite or just
very long. Even BadHellos eventually would terminate after printing over a billion
lines because of overflow. If you invoke PROGRAM 1.3.8 with arguments such as java
Gambler 100000 200000 100, you may not want to wait for the answer. You will
learn to be aware of and to estimate the running time of your programs.

Why not have Java detect infinite loops and warn us about them? You might
be surprised to know that it is not possible to do so, in general. This counterintui-
tive fact is one of the fundamental results of theoretical computer science.

public class BadHellos
...
int i = 4;
while (i > 3)
{
 System.out.println
 (i + "th Hello");
 i = i + 1;
}
...

% java BadHellos
1st Hello
2nd Hello
3rd Hello
5th Hello
6th Hello
7th Hello
...

An infinite loop

!"#$%&'(')!"*+,,,10 ./01/23,,,0425,67

731.3 Conditionals and Loops

Summary For reference, the accompanying table lists the programs that we
have considered in this section. They are representative of the kinds of tasks we can
address with short programs comprised of if, while, and for statements process-
ing built-in types of data. These types of
computations are an appropriate way to
become familiar with the basic Java flow-
of-control constructs. The time that you
spend now working with as many such
programs as you can will certainly pay
off for you in the future.

To learn how to use condition-
als and loops, you must practice writ-
ing and debugging programs with if,
while, and for statements. The exer-
cises at the end of this section provide
many opportunities for you to begin this
process. For each exercise, you will write
a Java program, then run and test it. All
programmers know that it is unusual to
have a program work as planned the first
time it is run, so you will want to have an understanding of your program and an
expectation of what it should do, step by step. At first, use explicit traces to check
your understanding and expectation. As you gain experience, you will find yourself
thinking in terms of what a trace might produce as you compose your loops. Ask
yourself the following kinds of questions: What will be the values of the variables
after the loop iterates the first time? The second time? The final time? Is there any
way this program could get stuck in an infinite loop?

Loops and conditionals are a giant step in our ability to compute: if, while,
and for statements take us from simple straight-line programs to arbitrarily com-
plicated flow of control. In the next several chapters, we will take more giant steps
that will allow us to process large amounts of input data and allow us to define
and process types of data other than simple numeric types. The if, while, and
for statements of this section will play an essential role in the programs that we
consider as we take these steps.

program description

Flip simulate a coin flip

TenHellos your first loop

PowersOfTwo compute and print a table of values

DivisorPattern your first nested loop

Harmonic compute finite sum

Sqrt classic iterative algorithm

Binary basic number conversion

Gambler simulation with nested loops

Factors while loop within a for loop

Summary of programs in this section

!"#$%&'(')!"*+,,,1. ./01/23,,,0425,67

74 Elements of Programming

Q&A

Q. What is the difference between = and ==?

A. We repeat this question here to remind you to be sure not to use = when you
mean == in a conditional expression. The expression (x = y) assigns the value of
y to x, whereas the expression (x == y) tests whether the two variables currently
have the same values. In some programming languages, this difference can wreak
havoc in a program and be difficult to detect, but Java’s type safety usually will
come to the rescue. For example, if we make the mistake of typing (t = goal)
instead of (t == goal) in PROGRAM 1.3.8, the compiler finds the bug for us:

javac Gambler.java
Gambler.java:18: incompatible types
found : int
required: boolean
if (t = goal) wins++;
 ^
1 error

Be careful about writing if (x = y) when x and y are boolean variables, since this
will be treated as an assignment statement, which assigns the value of y to x and
evaluates to the truth value of y. For example, instead of writing if (isPrime =
false), you should write if (!isPrime).

Q. So I need to pay attention to using == instead of = when writing loops and con-
ditionals. Is there something else in particular that I should watch out for?

A. Another common mistake is to forget the braces in a loop or conditional with a
multi-statement body. For example, consider this version of the code in Gambler:

for (int t = 0; t < T; t++)
 for (cash = stake; cash > 0 && cash < goal; bets++)
 if (Math.random() < 0.5) cash++;
 else cash--;
 if (cash == goal) wins++;

The code appears correct, but it is dysfunctional because the second if is outside
both for loops and gets executed just once. Our practice of using explicit braces for
long statements is precisely to avoid such insidious bugs.

!"#$%&'(')!"*+,,,1- ./01/23,,,0425,67

751.3 Conditionals and Loops

Q. Anything else?

A. The third classic pitfall is ambiguity in nested if statements:

if <expr1> if <expr2> <stmntA> else <stmntB>

In Java this is equivalent to

if <expr1> { if <expr2> <stmntA> else <stmntB> }

even if you might have been thinking

if <expr1> { if <expr2> <stmntA> } else <stmntB>

Again, using explicit braces is a good way to avoid this pitfall.

Q. Are there cases where I must use a for loop but not a while, or vice versa?

A. No. Generally, you should use a for loop when you have an initialization, an
increment, and a loop continuation test (if you do not need the loop control vari-
able outside the loop). But the equivalent while loop still might be fine.

Q. What are the rules on where we declare the loop-control variables?

A. Opinions differ. In older programming languages, it was required that all vari-
ables be declared at the beginning of a <body>, so many programmers are in this
habit and there is a lot of code out there that follows this convention. But it makes a
lot of sense to declare variables where they are first used, particularly in for loops,
when it is normally the case that the variable is not needed outside the loop. How-
ever, it is not uncommon to need to test (and therefore declare) the loop-control
variable outside the loop, as in the primality-testing code we considered as an ex-
ample of the break statement.

Q. What is the difference between ++i and i++?

A. As statements, there is no difference. In expressions, both increment i, but ++i
has the value after the increment and i++ the value before the increment. In this
book, we avoid statements like x = ++i that have the side effect of changing vari-
able values. So, it is safe to not worry much about this distinction and just use i++

!"#$%&'(')!"*+,,,15 ./01/23,,,0425,67

76 Elements of Programming

in for loops and as a statement. When we do use ++i in this book, we will call at-
tention to it and say why we are using it.

Q. So, <initialize> and <increment> can be any statements whatsoever in a for
loop. How can I take advantage of that?

A. Some experts take advantage of this ability to create compact code fragments,
but, as a beginner, it is best for you to use a while loop in such situations. In fact,
the situation is even more complicated because <initialize> and <increment>
can be sequences of statements, separated by commas. This notation allows for code
that initializes and modifies other variables besides the loop index. In some cases,
this ability leads to compact code. For example, the following two lines of code
could replace the last eight lines in the body of the main() method in PowersOfTwo
(PROGRAM 1.3.3):

for (int i = 0, v = 1; i <= n; i++, v *= 2)
 System.out.println(i + " " + v);

Such code is rarely necessary and better avoided, particularly by beginners.

Q Can I use a double value as an index in a for loop?

A It is legal, but generally bad practice to do so. Consider the following loop:

for (double x = 0.0; x <= 1.0; x += 0.1)
 System.out.println(x + “ “ + Math.sin(x));

How many times does it iterate? The number of iterations depends on an equality
test between double values, which may not always give the result that you expect.

Q. Anything else tricky about loops?

A. Not all parts of a for loop need to be filled
in with code. The initialization statement, the
boolean expression, the increment statement,
and the loop body can each be omitted. It is gen-
erally better style to use a while statement than
null statements in a for loop. In the code in this
book, we avoid null statements.

null increment
statement

Three equivalent loops

null loop body

int v = 1;
while (v <= N/2)
 v *= 2;

for (int v = 1; v <= N/2;)
 v *= 2;

for (int v = 1; v <= N/2; v *= 2)
 ;

!"#$%&'(')!"*+,,,18 ./01/23,,,0425,67

771.3 Conditionals and Loops

Exercises

1.3.1 Write a program that takes three integer command-line arguments and
prints equal if all three are equal, and not equal otherwise.

1.3.2 Write a more general and more robust version of Quadratic (PROGRAM
1.2.3) that prints the roots of the polynomial ax2 + bx + c, prints an appropriate
message if the discriminant is negative, and behaves appropriately (avoiding divi-
sion by zero) if a is zero.

1.3.3 What (if anything) is wrong with each of the following statements?
a. if (a > b) then c = 0;

b. if a > b { c = 0; }

c. if (a > b) c = 0;

d. if (a > b) c = 0 else b = 0;

1.3.4 Write a code fragment that prints true if the double variables x and y are
both strictly between 0 and 1 and false otherwise.

1.3.5 Improve your solution to EXERCISE 1.2.25 by adding code to check that the
values of the command-line arguments fall within the ranges of validity of the for-
mula, and also adding code to print out an error message if that is not the case.

1.3.6 Suppose that i and j are both of type int. What is the value of j after each
of the following statements is executed?

a. for (i = 0, j = 0; i < 10; i++) j += i;

b. for (i = 0, j = 1; i < 10; i++) j += j;

c. for (j = 0; j < 10; j++) j += j;

d. for (i = 0, j = 0; i < 10; i++) j += j++;

1.3.7 Rewrite TenHellos to make a program Hellos that takes the number of
lines to print as a command-line argument. You may assume that the argument is
less than 1000. Hint: Use i % 10 and i % 100 to determine when to use st, nd, rd, or
th for printing the ith Hello.

1.3.8 Write a program that, using one for loop and one if statement, prints the

!"#$%&'(')!"*+,,,11 ./01/23,,,0425,67

78 Elements of Programming

integers from 1,000 to 2,000 with five integers per line. Hint: Use the % operation.

1.3.9 Write a program that takes an integer N as a command-line argument,
uses Math.random() to print N uniform random values between 0 and 1, and then
prints their average value (see EXERCISE 1.2.30).

1.3.10 Describe what happens when you try to print a ruler function (see the table
on page 57) with a value of N that is too large, such as 100.

1.3.11 Write a program FunctionGrowth that prints a table of the values log N,
N, N log N, N 2, N 3, and 2 N for N = 16, 32, 64, ... , 2048. Use tabs (\t characters) to
line up columns.

1.3.12 What are the values of m and n after executing the following code?

int n = 123456789;
int m = 0;
while (n != 0)
{
 m = (10 * m) + (n % 10);
 n = n / 10;
}

1.3.13 What does the following program print ?

int f = 0, g = 1;
for (int i = 0; i <= 15; i++)
{
 System.out.println(f);
 f = f + g;
 g = f - g;
}

Solution. Even an expert programmer will tell you that the only way to under-
stand a program like this is to trace it. When you do, you will find that it prints the
values 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 134, 233, 377, and 610. These numbers are
the first sixteen of the famous Fibonacci sequence, which are defined by the follow-
ing formulas: F0 = 0, F1 = 1, and Fn = Fn-1 + Fn-2 for n > 1. The Fibonacci sequence
arises in a surprising variety of contexts, they have been studied for centuries, and

!"#$%&'(')!"*+,,,19 ./01/23,,,0425,67

791.3 Conditionals and Loops

many of their properties are well-known. For example, the ratio of successive num-
bers approaches the golden ratio % (about 1.618) as n approaches infinity.

1.3.14 Write a program that takes a command-line argument N and prints all the
positive powers of two less than or equal to N. Make sure that your program works
properly for all values of N. (Integer.parseInt() will generate an error if N is too
large, and your program should print nothing if N is negative.)

1.3.15 Expand your solution to EXERCISE 1.2.24 to print a table giving the total
amount paid and the remaining principal after each monthly payment.

1.3.16 Unlike the harmonic numbers, the sum 1/12 + 1/22 + ... + 1/N2 does con-
verge to a constant as N grows to infinity. (Indeed, the constant is #2/6, so this
formula can be used to estimate the value of #.) Which of the following for loops
computes this sum? Assume that N is an int initialized to 1000000 and sum is a
double initialized to 0.0.

a. for (int i = 1; i <= N; i++) sum += 1 / (i*i);

b. for (int i = 1; i <= N; i++) sum += 1.0 / i*i;

c. for (int i = 1; i <= N; i++) sum += 1.0 / (i*i);

d. for (int i = 1; i <= N; i++) sum += 1 / (1.0*i*i);

1.3.17 Show that PROGRAM 1.3.6 implements Newton’s method for finding the
square root of c. Hint : Use the fact that the slope of the tangent to a (differentiable)
function f(x) at x = t is f '(t) to find the equation of the tangent line and then use
that equation to find the point where the tangent line intersects the x-axis to show
that you can use Newton’s method to find a root of any function as follows: at each
iteration, replace the estimate t by t ! f(t) / f '(t).

1.3.18 Using Newton’s method, develop a program that takes integers N and k as
command-line arguments and prints the kth root of N (Hint : see EXERCISE 1.3.17).

1.3.19 Modify Binary to get a program Kary that takes i and k as command-line
arguments and converts i to base k. Assume that i is an integer in Java’s long data
type and that k is an integer between 2 and 16. For bases greater than 10, use the
letters A through F to represent the 11th through 16th digits, respectively.

!"#$%&'(')!"*+,,,13 ./01/23,,,0425,67

80 Elements of Programming

1.3.20 Write a code fragment that puts the binary representation of a positive
integer N into a String s.

Solution. Java has a built-in method Integer.toBinaryString(N) for this job,
but the point of the exercise is to see how such a method might be implemented.
Working from PROGRAM 1.3.7, we get the solution

String s = "";
int v = 1;
while (v <= n/2) v = 2*v;
while (v > 0)
{
 if (n < v) { s += 0; }
 else { s += 1; n -= v; }
 v = v/2;
}

A simpler option is to work from right to left:

String s = "";
for (int n = N; n > 0; n /= 2)
 s = (n % 2) + s;

Both of these methods are worthy of careful study.

1.3.21 Write a version of Gambler that uses two nested while loops or two nested
for loops instead of a while loop inside a for loop.

1.3.22 Write a program GamblerPlot that traces a gambler’s ruin simulation by
printing a line after each bet in which one asterisk corresponds to each dollar held
by the gambler.

1.3.23 Modify Gambler to take an extra command-line argument that specifies
the (fixed) probability that the gambler wins each bet. Use your program to try to
learn how this probability affects the chance of winning and the expected number
of bets. Try a value of p close to .5 (say, .48).

1.3.24 Modify Gambler to take an extra command-line argument that specifies
the number of bets the gambler is willing to make, so that there are three possible

!"#$%&'(')!"*+,,,92 ./01/23,,,0425,67

811.3 Conditionals and Loops

ways for the game to end: the gambler wins, loses, or runs out of time. Add to the
output to give the expected amount of money the gambler will have when the game
ends. Extra credit : Use your program to plan your next trip to Monte Carlo.

1.3.25 Modify Factors to print just one copy each of the prime divisors.

1.3.26 Run quick experiments to determine the impact of using the termination
condition (i <= N/i) instead of (i < N) in Factors in PROGRAM 1.3.9. For each
method, find the largest n such that when you type in an n digit number, the pro-
gram is sure to finish within 10 seconds.

1.3.27 Write a program Checkerboard that takes one command-line argument N
and uses a loop within a loop to print out a two-dimensional N-by-N checkerboard
pattern with alternating spaces and asterisks.

1.3.28 Write a program GCD that finds the greatest common divisor (gcd) of two
integers using Euclid’s algorithm, which is an iterative computation based on the
following observation: if x is greater than y, then if y divides x, the gcd of x and y is
y; otherwise, the gcd of x and y is the same as the gcd of x % y and y.

1.3.29 Write a program RelativelyPrime that takes one command-line argu-
ment N and prints out an N-by-N table such that there is an * in row i and column j
if the gcd of i and j is 1 (i and j are relatively prime) and a space in that position
otherwise.

1.3.30 Write a program PowersOfK that takes an integer k as command-line argu-
ment and prints all the positive powers of k in the Java long data type. Note : The
constant Long.MAX_VALUE is the value of the largest integer in long.

1.3.31 Generate a random point (x, y, z) on the surface of a sphere using Mar-
saglia’s method: Pick a random point (a, b) in the unit disk using the method de-
scribed at the end of this section. Then, set x = 2 a "1 -a2 - b2 . y = 2 b "1 -a2 - b2.
and z = 1 - 2 (a2 + b2).

!"#$%&'(')!"*+,,,9: ./01/23,,,0425,67

82 Elements of Programming

Creative Exercises

1.3.32 Ramanujan’s taxi. Srinivasa Ramanujan was an Indian mathematician
who became famous for his intuition for numbers. When the English mathemati-
cian G. H. Hardy came to visit him one day, Hardy remarked that the number of
his taxi was 1729, a rather dull number. To which Ramanujan replied, “No, Hardy!
No, Hardy! It is a very interesting number. It is the smallest number expressible as
the sum of two cubes in two different ways.” Verify this claim by writing a program
that takes a command-line argument N and prints out all integers less than or equal
to N that can be expressed as the sum of two cubes in two different ways. In other
words, find distinct positive integers a, b, c, and d such that a3 + b3 = c3 + d3. Use four
nested for loops.

1.3.33 Checksum. The International Standard Book Number (ISBN) is a 10-digit
code that uniquely specifies a book. The rightmost digit is a checksum digit that
can be uniquely determined from the other 9 digits, from the condition that d1 +
2d2 +3d3 + ... + 10d10 must be a multiple of 11 (here di denotes the ith digit from the
right). The checksum digit di can be any value from 0 to 10. The ISBN convention is
to use the character 'X' to denote 10. Example: the checksum digit corresponding
to 020131452 is 5 since 5 is the only value of x between 0 and 10 for which

10·0 + 9·2 + 8·0 + 7·1 + 6·3 + 5·1 +4·4 +3·5 + 2·2 + 1·x

is a multiple of 11. Write a program that takes a 9-digit integer as a command-line
argument, computes the checksum, and prints out the the ISBN number.

1.3.34 Counting primes. Write a program PrimeCounter that takes a command-
line argument N and finds the number of primes less than or equal to N. Use it to
print out the number of primes less than or equal to 10 million. Note : if you are not
careful, your program may not finish in a reasonable amount of time!

1.3.35 2D random walk. A two-dimensional random walk simulates the behavior
of a particle moving in a grid of points. At each step, the random walker moves
north, south, east, or west with probability equal to 1/4, independent of previous
moves. Write a program RandomWalker that takes a command-line argument N and
estimates how long it will take a random walker to hit the boundary of a 2N-by-2N
square centered at the starting point.

!"#$%&'(')!"*+,,,90 ./01/23,,,0425,67

831.3 Conditionals and Loops

1.3.36 Exponential function. Assume that x is a positive variable of type double.
Write a code fragment that uses the Taylor series expansion to set the value of sum
to e x = 1 + x + x2/2! + x3/3! +

Solution. The purpose of this exercise is to get you to think about how a library
function like Math.exp() might be implemented in terms of elementary operators.
Try solving it, then compare your solution with the one developed here.

We start by considering the problem of computing one term. Suppose that x
and term are variables of type double and n is a variable of type int. The following
code fragment sets term to x N / N ! using the direct method of having one loop for
the numerator and another loop for the denominator, then dividing the results:

double num = 1.0, dem = 1.0;
for (int i = 1; i <= n; i++) num *= x;
for (int i = 1; i <= n; i++) den *= i;
double term = num/den;

A better approach is to use just a single for loop:

double term = 1.0;
for (i = 1; i <= n; i++) term *= x/i;

Besides being more compact and elegant, the latter solution is preferable because
it avoids inaccuracies caused by computing with huge numbers. For example, the
two-loop approach breaks down for values like x = 10 and N = 100 because 100! is
too large to represent as a double.

To compute ex , we nest this for loop within another for loop:

double term = 1.0;
double sum = 0.0;
for (int n = 1; sum != sum + term; n++)
{
 sum += term;
 term = 1.0;
 for (int i = 1; i <= n; i++) term *= x/i;
}

The number of times the loop iterates depends on the relative values of the next
term and the accumulated sum. Once the value of the sum stops changing, we

!"#$%&'(')!"*+,,,9. ./01/23,,,0425,67

84 Elements of Programming

leave the loop. (This strategy is more efficient than using the termination condi-
tion (term > 0) because it avoids a significant number of iterations that do not
change the value of the sum.) This code is effective, but it is inefficient because the
inner for loop recomputes all the values it computed on the previous iteration of
the outer for loop. Instead, we can make use of the term that was added in on the
previous loop iteration and solve the problem with a single for loop:

double term = 1.0;
double sum = 0.0;
for (int n = 1; sum != sum + term; n++)
{
 sum += term;
 term *= x/n;
}

1.3.37 Trigonometric functions. Write two programs, Sin and Cos, that
compute the sine and cosine functions using their Taylor series expansions
sin x = x ! x 3/3! + x 5/5! ! ... and cos x = 1 ! x 2/2! + x 4/4! !

1.3.38 Experimental analysis. Run experiments to determine the relative costs of
Math.exp() and the methods from EXERCISE 1.3.36 for computing e x : the direct
method with nested for loops, the improvement with a single for loop, and the
latter with the termination condition (term > 0). Use trial-and-error with a com-
mand-line argument to determine how many times your computer can perform
each computation in 10 seconds.

1.3.39 Pepys problem. In 1693 Samuel Pepys asked Isaac Newton which is more
likely: getting 1 at least once when rolling a fair die six times or getting 1 at least
twice when rolling it 12 times. Write a program that could have provided Newton
with a quick answer.

1.3.40 Game simulation. In the 1970s game show Let’s Make a Deal, a contestant
is presented with three doors. Behind one of them is a valuable prize. After the con-
testant chooses a door, the host opens one of the other two doors (never revealing
the prize, of course). The contestant is then given the opportunity to switch to the
other unopened door. Should the contestant do so? Intuitively, it might seem that

!"#$%&'(')!"*+,,,9- ./01/23,,,0425,67

851.3 Conditionals and Loops

the contestant’s initial choice door and the other unopened door are equally likely
to contain the prize, so there would be no incentive to switch. Write a program Mon-
teHall to test this intuition by simulation. Your program should take a command-
line argument N, play the game N times using each of the two strategies (switch or
do not switch), and print the chance of success for each of the two strategies.

1.3.41 Median-of-5. Write a program that takes five distinct integers from the
command line and prints the median value (the value such that two of the others
are smaller and two are larger). Extra credit : Solve the problem with a program that
compares values fewer than seven times for any given input.

1.3.42 Sorting three numbers. Suppose that the variables a, b, c, and t are all of
the same numeric primitive type. Prove that the following code puts a, b, and c in
ascending order:

if (a > b) { t = a; a = b; b = t; }
if (a > c) { t = a; a = c; c = t; }
if (b > c) { t = b; b = c; c = t; }

1.3.43 Chaos. Write a program to study the following simple model for popula-
tion growth, which might be applied to study fish in a pond, bacteria in a test tube,
or any of a host of similar situations. We suppose that the population ranges from
0 (extinct) to 1 (maximum population that can be sustained). If the population at
time t is x, then we suppose the population at time t + 1 to be rx(1!x), where the
argument r, known as the fecundity parameter, controls the rate of growth. Start
with a small population—say, x = 0.01—and study the result of iterating the model,
for various values of r. For which values of r does the population stabilize at x = 1
! 1/r ? Can you say anything about the population when r is 3.5? 3.8? 5?

1.3.44 Euler’s sum-of-powers conjecture. In 1769 Leonhard Euler formulated a
generalized version of Fermat’s Last Theorem, conjecturing that at least n nth pow-
ers are needed to obtain a sum that is itself an nth power, for n > 2. Write a program
to disprove Euler’s conjecture (which stood until 1967), using a quintuply nested
loop to find four positive integers whose 5th power sums to the 5th power of an-
other positive integer. That is, find a, b, c, d, and e such that a 5 " b 5 " c 5 " d 5 * e 5.
Use the long data type.

!"#$%&'(')!"*+,,,95 ./01/23,,,0425,67

Elements of Programming

1.4 Arrays

IN THIS SECTION, WE CONSIDER A fundamental programming construct known as the
array. The primary purpose of an array is to facilitate storing and manipulating
large quantities of data. Arrays play an essential role in many data processing tasks.
They also correspond to vectors and matrices, which are widely used in science and
in scientific programming. We will con-
sider basic properties of array processing
in Java, with many examples illustrating
why they are useful.

An array stores a sequence of values
that are all of the same type. Processing
such a set of values is very common. We
might have exam scores, stock prices, nucleotides in a DNA strand, or characters in
a book. Each of these examples involve a large number of values that are all of the
same type.

We want not only to store values but also directly access each in-
dividual value. The method that we use to refer to individual values in
an array is numbering and then indexing them. If we have N values, we
think of them as being numbered from 0 to N!1. Then, we can unam-
biguously specify one of them by referring to the ith value for any value
of i from 0 to N!1. To refer to the ith value in an array a, we use the
notation a[i], pronounced a sub i. This Java construct is known as a
one-dimensional array.

The one-dimensional array is our first example in this book of a
data structure (a method for organizing data). We also consider in this
section a more complicated data structure known as a two-dimensional
array. Data structures play an essential role in modern programming—
CHAPTER 4 is largely devoted to the topic.

Typically, when we have a large amount of data to process, we first put all of
the data into one or more arrays. Then we use array indexing to refer to individual
values and to process the data. We consider such applications when we discuss data
input in SECTION 1.5 and in the case study that is the subject of SECTION 1.6. In this
section, we expose the basic properties of arrays by considering examples where
our programs first populate arrays with computed values from experimental stud-
ies and then process them.

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a

An array

1.4.1 Sampling without replacement . . . 94
1.4.2 Coupon collector simulation 98
1.4.3 Sieve of Eratosthenes 100
1.4.4 Self-avoiding random walks 109

Programs in this section

!"#$%&'(')!"*+,,,98 ./01/23,,,0425,67

871.4 Arrays

Arrays in Java Making an array in a Java program involves three distinct steps:
Declare the array name and type.
Create the array.
Initialize the array values.

To declare the array, you need to specify a name and the type of data it will contain.
To create it, you need to specify its size (the number of values). For example, the
following code makes an array of N numbers of type double, all initialized to 0.0:

double[] a;
a = new double[N];
for (int i = 0; i < N; i++)
 a[i] = 0.0;

The first statement is the array declaration. It is just like a declaration of a variable
of the corresponding primitive type except for the square brackets following the
type name, which specify that we are declaring an array. The second statement cre-
ates the array. This action is unnecessary for variables of a primitive type (so we
have not seen a similar action before), but it is needed for all other types of data in
Java (see SECTION 3.1). In the code in this book, we normally keep the array length in
an integer variable N, but any integer-valued expression will do. The for statement
initializes the N array values. We refer to each value by putting its index in brackets
after the array name. This code sets all of the array entries to the value 0.0.

When you begin to write code that uses an array, you must be sure that your
code declares, creates, and initializes it. Omitting one of these steps is a common
programming mistake. For economy in code, we often take advantage of Java’s de-
fault array initialization convention and combine all three steps into a single state-
ment. For example, the following statement is equivalent to the code above:

double[] a = new double[N];

The code to the left of the equal sign constitutes the declaration; the code to the
right constitutes the creation. The for loop is unnecessary in this case because the
default initial value of variables of type double in a Java array is 0.0, but it would
be required if a nonzero value were desired. The default initial value is zero for all
numbers and false for type boolean. For String and other non-primitive types,
the default is the value null, which you will learn about in CHAPTER 3.

After declaring and creating an array, you can refer to any individual value
anywhere you would use a variable name in a program by enclosing an integer in-

!"#$%&'(')!"*+,,,91 ./01/23,,,0425,67

88 Elements of Programming

dex in braces after the array name. We refer to the ith item with the code a[i]. The
explicit initialization code shown earlier is an example of such a use. The obvious
advantage of using arrays is to avoid explicitly naming each variable individually.
Using an array index is virtually the same as appending the index to the array name:
for example, if we wanted to process eight variables of type double, we could de-
clare each of them individually with the declaration

double a0, a1, a2, a3, a4, a5, a6, a7;

and then refer to them as a0, a1 and so forth instead of declaring them with dou-
ble[] a = new double[8] and referring to them as a[0], a[1], and so forth. But
naming dozens of individual variables in this way would be cumbersome and nam-
ing millions is untenable.

As an example of code that uses arrays, consider using arrays to represent vec-
tors. We consider vectors in detail in SECTION 3.3; for the moment, think of a vector
as a sequence of real numbers. The dot product of two vectors (of the same length)
is the sum of the products of their corresponding components. The dot product
of two vectors that are represented as one-dimensional arrays x[] and y[] that are
each of length 3 is the expression x[0]*y[0] + x[1]*y[1] + x[2]*y[2]. If we
represent the two vectors as one-dimensional arrays x[] and y[] that are each of
length N and of type double, the dot product is
easy to compute:

double sum = 0.0;
for (int i = 0; i < N; i++)
 sum += x[i]*y[i];

The simplicity of coding such computations
makes the use of arrays the natural choice for all
kinds of applications. (Note that when we use the
notation x[], we are referring to the whole array,
as opposed to x[i], which is a reference to the ith
entry.)

The accompanying table has many examples of array-processing code, and we
will consider even more examples later in the book, because arrays play a central
role in processing data in many applications. Before considering more sophisticat-
ed examples, we describe a number of important characteristics of programming
with arrays.

i x[i] y[i] x[i]*y[i] sum

0

0 .30 .50 .15 .15

1 .60 .10 .06 .21

2 .10 .40 .04 .25

.25

Trace of dot product computation

!"#$%&'(')!"*+,,,99 ./01/23,,,0425,67

891.4 Arrays

Zero-based indexing. We always refer to the first element of an array as a[0], the
second as a[1], and so forth. It might seem more natural to you to refer to the first
element as a[1], the second value as a[2], and so forth, but starting the index-
ing with 0 has some advantages and has emerged as the convention used in most
modern programming languages. Misunderstanding this convention often leads to
off-by one-errors that are notoriously difficult to avoid and debug, so be careful!

Array length. Once we create an array, its size is fixed. The reason that we need to
explicitly create arrays at runtime is that the Java compiler cannot know how much
space to reserve for the array at compile time (as it can for primitive-type values).
Our convention is to keep the size of the array in a variable N whose value can be
set at runtime (usually it is the value of a command-line argument). Java’s stan-
dard mechanism is to allow a program to refer to the length of an array a[] with
the code a.length; we normally use N to create the array, or set the value of N to
a.length. Note that the last element of an array is always a[a.length-1].

create an array
with random values

double[] a = new double[N];
for (int i = 0; i < N; i++)
 a[i] = Math.random();

print the array values,
one per line

for (int i = 0; i < N; i++)
 System.out.println(a[i]);

find the maximum of
the array values

double max = Double.NEGATIVE_INFINITY;
for (int i = 0; i < N; i++)
 if (a[i] > max) max = a[i];

compute the average of
 the array values

double sum = 0.0;
for (int i = 0; i < N; i++)
 sum += a[i];
double average = sum / N;

copy to another array
double[] b = new double[N];
for (int i = 0; i < N; i++)
 b[i] = a[i];

reverse the elements
within an array

for (int i = 0; i < N/2; i++)
{
 double temp = b[i];
 b[i] = b[N-1-i];
 b[N-i-1] = temp;
}

Typical array-processing code (for arrays of N double values)

!"#$%&'(')!"*+,,,93 ./01/23,,,0425,67

90 Elements of Programming

Memory representation. Arrays are fundamental data structures in that they
have a direct correspondence with memory systems on virtually all computers.
The elements of an array are stored consecutively in memory, so that it is easy
to quickly access any array value. Indeed, we can view memory itself as a giant

array. On modern computers, memory is implemented in hardware as
a sequence of indexed memory locations that each can be quickly ac-
cessed with an appropriate index. When referring to computer memory,
we normally refer to a location’s index as its address. It is convenient to
think of the name of the array—say, a—as storing the memory address
of the first element of the array a[0]. For the purposes of illustration,
suppose that the computer’s memory is organized as 1,000 values, with
addresses from 000 to 999. (This simplified model ignores the fact that
array elements can occupy differing amounts of memory depending on
their type, but you can ignore such details for the moment.) Now, sup-
pose that an array of eight elements is stored in memory locations 523
through 530. In such a situation, Java would store the memory address
(index) of the first array value somewhere else in memory, along with
the array length. We refer to the address as a pointer and think of it as
pointing to the referenced memory location. When we specify a[i], the
compiler generates code that accesses the desired value by adding the
index i to the memory address of the array a[]. For example, the Java
code a[4] would generate machine code that finds the value at memory
location 523 + 4 = 527. Accessing element i of an array is an efficient
operation because it simply requires adding two integers and then refer-
encing memory—just two elementary operations. Extending the model
to handle different-sized array elements just involves multiplying the
index by the element size before adding to the array address.

Memory allocation. When you use new to create an array, Java reserves
space in memory for it. This process is called memory allocation. The
same process is required for all variables that you use in a program. We
call attention to it now because it is your responsibility to use new to al-

locate memory for an array before accessing any of its elements. If you fail to adhere
to this rule, you will get a compile-time uninitialized variable error. Java automati-
cally initializes all of the values in an array when it is created. You should remember
that the time required to create an array is proportional to its length.

523 a[0]
524 a[1]

123 523
124 8

000

a

a.length

525 a[2]
526 a[3]
527 a[4]
528 a[5]
529 a[6]
530 a[7]

999

Memory representation

!"#$%&'(')!"*+,,,32 ./01/23,,,0425,67

911.4 Arrays

Bounds checking. As already indicated, you must be careful when programming
with arrays. It is your responsibility to use legal indices when accessing an array
element. If you have created an array of size N and use an index whose value is less
than 0 or greater than N-1, your program will terminate with an ArrayIndex-
OutOfBounds run-time exception. (In many programming languages, such buffer
overflow conditions are not checked by the system. Such unchecked errors can and
do lead to debugging nightmares, but it is also not uncommon for such an error to
go unnoticed and remain in a finished program. You might be surprised to know
that such a mistake can be exploited by a hacker to take control of a system, even
your personal computer, to spread viruses, steal personal information, or wreak
other malicious havoc.) The error messages provided by Java may seem annoying
to you at first, but they are small price to pay to have a more secure program.

Setting array values at compile time. When we have a small number of literal
values that we want to keep in array, we can declare and initialize it by listing the
values between curly braces, separated by commas. For example, we might use the
following code in a program that processes playing cards.

String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" };

String[] rank =
{
 "2", "3", "4", "5", "6", "7", "8", "9", "10",
 "Jack", "Queen", "King", "Ace"
};

After creating the two arrays, we can use them to print out a random card name,
such as Queen of Clubs, as follows:

int i = (int) (Math.random() * rank.length);
int j = (int) (Math.random() * suit.length);
System.out.println(rank[i] + " of " + suit[j]);

This code uses the idiom introduced in SECTION 1.2 to generate random indices and
then uses the indices to pick strings out of the arrays. Whenever the values of all
array entries are known at compile time (and the size of the array is not too large)
it makes sense to use this method of initializing the array—just put all the values in
braces on the right hand side of an assignment in the array declaration. Doing so
implies array creation, so the new keyword is not needed.

!"#$%&'(')!"*+,,,3: ./01/23,,,0425,67

92 Elements of Programming

Setting array values at runtime. A more typical situation is when we wish to
compute the values to be stored in an array. In this case, we can use array names
with indices in the same way we use variable names on the left side of assignment
statements. For example, we might use the following code to initialize an array of
size 52 that represents a deck of playing cards, using the two arrays just defined:

String[] deck = new String[suit.length * rank.length];
for (int i = 0; i < suit.length; i++)
 for (int j = 0; j < rank.length; j++)
 deck[rank.length*i + j] = rank[i] + " of " + suit[j];

After this code has been executed, if you were to print out the contents of deck in
order from deck[0] through deck[51] using System.out.println(), you would
get the sequence

2 of Clubs
2 of Diamonds
2 of Hearts
2 of Spades
3 of Clubs
3 of Diamonds
...
Ace of Hearts
Ace of Spades

Exchange. Frequently, we wish to exchange two values in an array. Continuing our
example with playing cards, the following code exchanges the cards at position i
and j using the same idiom that we traced as our first example of the use of assign-
ment statements in SECTION 1.2:

String t = deck[i];
deck[i] = deck[j];
deck[j] = t;

When we use this code, we are assured that we are perhaps changing the order of
the values in the array but not the set of values in the array. When i and j are equal,
the array is unchanged. When i and j are not equal, the values a[i] and a[j] are
found in different places in the array. For example, if we were to use this code with
i equal to 1 and j equal to 4 in the deck array of the previous example, it would
leave 3 of Clubs in deck[1] and 2 of Diamonds in deck[4].

!"#$%&'(')!"*+,,,30 ./01/23,,,0425,67

931.4 Arrays

Shuffle. The following code shuffles our deck of cards:

int N = deck.length;
for (int i = 0; i < N; i++)
{
 int r = i + (int) (Math.random() * (N-i));
 String t = deck[i];
 deck[i] = deck[r];
 deck[r] = t;
}

Proceeding from left to right, we pick a random card from deck[i] through
deck[N-1] (each card equally likely) and exchange it with deck[i]. This code is
more sophisticated than it might seem: First, we ensure that the cards in the deck
after the shuffle are the same as the cards in the deck before the shuffle by using
the exchange idiom. Second, we ensure that the shuffle is random by choosing uni-
formly from the cards not yet chosen.

Sampling without replacement. In many situations, we want to draw a random
sample from a set such that each member of the set appears at most once in the
sample. Drawing numbered ping-pong balls from a basket for a lottery is an ex-
ample of this kind of sample, as is dealing a hand from a deck of cards. Sample
(PROGRAM 1.4.1) illustrates how to sample, using the basic operation underlying
shuffling. It takes command-line arguments M and N and creates a permutation of
size N (a rearrangement of the integers from 0 to N-1) whose first M entries com-

i r
perm

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 9 9 1 2 3 4 5 6 7 8 0 10 11 12 13 14 15

1 5 9 5 2 3 4 1 6 7 8 0 10 11 12 13 14 15

2 13 9 5 13 3 4 1 6 7 8 0 10 11 12 2 14 15

3 5 9 5 13 1 4 3 6 7 8 0 10 11 12 2 14 15

4 11 9 5 13 1 11 3 6 7 8 0 10 4 12 2 14 15

5 8 9 5 13 1 11 8 6 7 3 0 10 4 12 2 14 15

9 5 13 1 11 8 6 7 3 0 10 4 12 2 14 15

Trace of java Sample 6 16

!"#$%&'(')!"*+,,,3. ./01/23,,,0425,67

94 Elements of Programming

% java Sample 6 16
9 5 13 1 11 8

% java Sample 10 1000
656 488 298 534 811 97 813 156 424 109

% java Sample 20 20
6 12 9 8 13 19 0 2 4 5 18 1 14 16 17 3 7 11 10 15

Program 1.4.1 Sampling without replacement

public class Sample
{
 public static void main(String[] args)
 { // Print a random sample of M integers
 // from 0 ... N-1 (no duplicates).
 int M = Integer.parseInt(args[0]);
 int N = Integer.parseInt(args[1]);
 int[] perm = new int[N];

 // Initialize perm[].
 for (int j = 0; j < N; j++)
 perm[j] = j;

 // Take sample.
 for (int i = 0; i < M; i++)
 { // Exchange perm[i] with a random element to its right.
 int r = i + (int) (Math.random() * (N-i));
 int t = perm[r];
 perm[r] = perm[i];
 perm[i] = t;
 }

 // Print sample.
 for (int i = 0; i < M; i++)
 System.out.print(perm[i] + " ");
 System.out.println();
 }
}

This program takes two command-line arguments M and N and produces a sample of M of the
integers from 0 to N-1. This process is useful, not just in state and local lotteries, but in scien-
tific applications of all sorts. If the first argument is equal to the second, the result is a random
permutation of the integers from 0 to N-1. If the first argument is greater than the second, the
program will terminate with an ArrayOutOfBounds exception.

M sample size
N range

perm[] permutation of 0 to N-1

!"#$%&'(')!"*+,,,3- ./01/23,,,0425,67

951.4 Arrays

prise a random sample. The accompanying trace of the contents of the perm[]
array at the end of each iteration of the main loop (for a run where the values of M
and N are 6 and 16, respectively) illustrates the process.

If the values of r are chosen such that each value in the given range is equally
likely, then perm[0] through perm[M-1] are a random sample at the end of the
process (even though some elements might move multiple times) because each
element in the sample is chosen by taking each item not yet sampled, with equal
probability for each choice. One important reason to explicitly compute the per-
mutation is that we can use it to print out a random sample of any array by using
the elements of the permutation as indices into the array. Doing so is often an at-
tractive alternative to actually rearranging the array because it may need to be in
order for some other reason (for instance, a company might wish to draw a random
sample from a list of customers that is kept in alphabetical order). To see how this
trick works, suppose that we wish to draw a random poker hand from our deck[]
array, constructed as just described. We use the code in Sample with N = 52 and M
= 5 and replace perm[i] with deck[perm[i]] in the System.out.print() state-
ment (and change it to println()), resulting in output such as the following:

3 of Clubs
Jack of Hearts
6 of Spades
Ace of Clubs
10 of Diamonds

Sampling like this is widely used as the basis for statistical studies in polling, scien-
tific research, and many other applications, whenever we want to draw conclusions
about a large population by analyzing a small random sample.

Precomputed values. One simple application of arrays is to save values that you
have computed, for later use. As an example, suppose that you are writing a pro-
gram that performs calculations using small values of the harmonic numbers (see
PROGRAM 1.3.5). An efficient approach is to save the values in an array, as follows:

double[] H = new double[N];
for (int i = 1; i < N; i++)
 H[i] = H[i-1] + 1.0/i;

Then you can just use the code H[i] to refer to any of the values. Precomputing val-
ues in this way is an example of a space-time tradeoff: by investing in space (to save

!"#$%&'(')!"*+,,,35 ./01/23,,,0425,67

96 Elements of Programming

the values) we save time (since we do not need to recompute them). This method
is not effective if we need values for huge N, but it is very effective if we need values
for small N many different times.

Simplifying repetitive code. As an example of another simple application of ar-
rays, consider the following code fragment, which prints out the name of a month
given its number (1 for January, 2 for February, and so forth):

if (m == 1) System.out.println("Jan");
else if (m == 2) System.out.println("Feb");
else if (m == 3) System.out.println("Mar");
else if (m == 4) System.out.println("Apr");
else if (m == 5) System.out.println("May");
else if (m == 6) System.out.println("Jun");
else if (m == 7) System.out.println("Jul");
else if (m == 8) System.out.println("Aug");
else if (m == 9) System.out.println("Sep");
else if (m == 10) System.out.println("Oct");
else if (m == 11) System.out.println("Nov");
else if (m == 12) System.out.println("Dec");

We could also use a switch statement, but a much more compact alternative is to
use a String array consisting of the names of each month:

String[] months =
{
 "", "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};
System.out.println(months[m]);

This technique would be especially useful if you needed to access the name of a
month by its number in several different places in your program. Note that we in-
tentionally waste one slot in the array (element 0) to make months[1] correspond
to January, as required.

Assignments and equality tests. Suppose that you have created the two arrays a[]
and b[]. What does it mean to assign one to the other with the code a = b; ? Simi-
larly, what does it mean to test whether the two arrays are equal with the code (a
== b)? The answers to these questions may not be what you first assume, but if you
think about the array memory representation, you will see that Java’s interpretation

!"#$%&'(')!"*+,,,38 ./01/23,,,0425,67

971.4 Arrays

of these operations makes sense: An assignment makes the names a and b refer to
the same array. The alternative would be to have an implied loop that assigns each
value in b to the corresponding value in a. Similarly, an equality test checks whether
the two names refer to the same array. The alternative would be to have an implied
loop that tests whether each value in one array is equal to the corresponding value
in the other array. In both cases, the implementation in Java is very simple: it just
performs the standard operation as if the array name were a variable whose value
is the memory address of the array. Note that there are many other operations
that you might want to perform on arrays: for example, it would be nice in some
applications to say a = a + b and have it mean “add the corresponding element
in b[] to each element in a[],” but that statement is not legal in Java. Instead, we
write an explicit loop to perform all the additions. We will consider in detail Java’s
mechanism for satisfying such higher-level programming needs in SECTION 3.2. In
typical applications, we use this mechanism, so we rarely need to use Java’s assign-
ments and equality tests with arrays.

WITH THESE BASIC DEFINITIONS AND EXAMPLES out of the way, we can now consider two
applications that both address interesting classical problems and illustrate the fun-
damental importance of arrays in efficient computation. In both cases, the idea of
using data to index into an array plays a central role and enables a computation that
would not otherwise be feasible.

Coupon collector Suppose that you have a shuffled deck of cards and
you turn them face up, one by one. How many cards do you need to turn
up before you have seen one of each suit? How many cards do you need to
turn up before seeing one of each value? These are examples of the famous
coupon collector problem. In general, suppose that a trading card company
issues trading cards with N different possible cards: how many do you have
to collect before you have all N possibilities, assuming that each possibility is equal-
ly likely for each card that you collect?

Coupon collecting is no toy problem. For example, it is very often the case that
scientists want to know whether a sequence that arises in nature has the same char-
acteristics as a random sequence. If so, that fact might be of interest; if not, further
investigation may be warranted to look for patterns that might be of importance.
For example, such tests are used by scientists to decide which parts of genomes
are worth studying. One effective test for whether a sequence is truly random is

Coupon collection

! " ! # # ! " $

!"#$%&'(')!"*+,,,31 ./01/23,,,0425,67

98 Elements of Programming

% java CouponCollector 1000
6583
% java CouponCollector 1000
6477
% java CouponCollector 1000000
12782673

Program 1.4.2 Coupon collector simulation

public class CouponCollector
{
 public static void main(String[] args)
 { // Generate random values in (0..N] until finding each one.
 int N = Integer.parseInt(args[0]);
 boolean[] found = new boolean[N];
 int cardcnt = 0, valcnt = 0;
 while (valcnt < N)
 { // Generate another value.
 int val = (int) (Math.random() * N);
 cardcnt++;
 if (!found[val])
 {
 valcnt++;
 found[val] = true;
 }
 } // N different values found.
 System.out.println(cardcnt);
 }
}

This program simulates coupon collection by taking a command-line argument N and generat-
ing random numbers between 0 and N-1 until getting every possible value.

N range
cardcnt values generated

valcnt different values found

found[] table of found values

the coupon collector test : compare the number of elements that need to be exam-
ined before all values are found against the corresponding number for a uniformly
random sequence. CouponCollector (PROGRAM 1.4.2) is an example program that
simulates this process and illustrates the utility of arrays. It takes the value of N from
the command line and generates a sequence of random integer values between 0

!"#$%&'(')!"*+,,,39 ./01/23,,,0425,67

991.4 Arrays

and N!1 using the code (int) (Math.random() * N) (see PROGRAM 1.2.5). Each
value represents a card: for each card, we want to know if we have seen that value
before. To maintain that knowledge, we use an array found[], which uses the card
value as an index: found[i] is true if we have seen
a card with value i and false if we have not. When
we get a new card that is represented by the integer
val, we check whether we have seen its value before
simply by accessing found[val]. The computation
consists of keeping count of the number of distinct
values seen and the number of cards generated and
printing the latter when the former gets to N.

As usual, the best way to understand a program
is to consider a trace of the values of its variables for
a typical run. It is easy to add code to CouponCol-
lector that produces a trace that gives the values
of the variables at the end of the while loop for a
typical run. In the accompanying figure, we use F
for the value false and T for the value true to make
the trace easier to follow. Tracing programs that use
large arrays can be a challenge: when you have an
array of size N in your program, it represents N vari-
ables, so you have to list them all. Tracing programs
that use Math.random() also can be a challenge because you get a different trace
every time you run the program. Accordingly, we check relationships among vari-
ables carefully. Here, note that valcnt always is equal to the number of true values
in found[].

 Without arrays, we could not contemplate simulating the coupon collector
process for huge N; with arrays it is easy to do so. We will see many examples of
such processes throughout the book.

Sieve of Eratosthenes Prime numbers play an important role in mathematics
and computation, including cryptography. A prime number is an integer greater
than one whose only positive divisors are one and itself. The prime counting func-
tion #(N) is the number of primes less than or equal to N. For example, #(25) = 9
since the first nine primes are 2, 3, 5, 7, 11, 13, 17, 19, and 23. This function plays a
central role in number theory.

val
found

valcnt cardcnt
0 1 2 3 4 5

F F F F F F 0 0

2 F F T F F F 1 1

0 T F T F F F 2 2

4 T F T F T F 3 3

0 T F T F T F 3 4

1 T T T F T F 4 5

2 T T T F T F 4 6

5 T T T F T T 5 7

0 T T T F T T 5 8

1 T T T F T T 5 9

3 T T T T T T 6 10

Trace for a typical run of
 java CouponCollector 6

!"#$%&'(')!"*+,,,33 ./01/23,,,0425,67

100 Elements of Programming

Program 1.4.3 Sieve of Eratosthenes

public class PrimeSieve
{
 public static void main(String[] args)
 { // Print the number of primes <= N.
 int N = Integer.parseInt(args[0]);
 boolean[] isPrime = new boolean[N+1];
 for (int i = 2; i <= N; i++)
 isPrime[i] = true;

 for (int i = 2; i <= N/i; i++)
 { if (isPrime[i])
 { // Mark multiples of i as nonprime.
 for (int j = i; j <= N/i; j++)
 isPrime[i * j] = false;
 }
 }

 // Count the primes.
 int primes = 0;
 for (int i = 2; i <= N; i++)
 if (isPrime[i]) primes++;
 System.out.println(primes);
 }
}

This program takes a command-line argument N and computes the number of primes less than
or equal to N. To do so, it computes an array of boolean values with isPrime[i] set to true if
i is prime, and to false otherwise. First, it sets to true all array elements in order to indicate
that no numbers are initially known to be nonprime. Then it sets to false array elements cor-
responding to indices that are known to be nonprime (multiples of known primes). If a[i] is
still true after all multiples of smaller primes have been set to false, then we know i to be
prime. The termination test in the second for loop is i <= N/i instead of the naive i <= N be-
cause any number with no factor less than N/i has no factor greater than N/i, so we do not have
to look for such factors. This improvement makes it possible to run the program for large N.

N argument
isPrime[i] is i prime?

primes prime counter

% java PrimeSieve 25
9
% java PrimeSieve 100
25
% java PrimeSieve 1000000000
50847534

!"#$%&'(')!"*+,,,:22 ./01/23,,,0425,67

1011.4 Arrays

One approach to counting primes is to use a program like Factors (PROGRAM
1.3.9). Specifically, we could modify the code in Factors to set a boolean value to
be true if a given number is prime and false otherwise (instead of printing out
factors), then enclose that code in a loop that increments a counter for each prime
number. This approach is effective for small N, but becomes too slow as N grows.

PrimeSieve (PROGRAM 1.4.3) takes a command-line integer N and computes
the prime count using a technique known as the Sieve of Eratosthenes. The program
uses a boolean array isPrime[] to record which integers are prime. The goal is
to set isPrime[i] to true if i is prime, and to false otherwise. The sieve works
as follows: Initially, set all array elements to true, indicating that no factors of any
integer have yet been found. Then, repeat the following steps as long as i <= N/i:

Find the next smallest i for which no factors have been found.
Leave isPrime[i] as true since i has no smaller factors.
Set the isPrime[] entries for all multiples of i to be false.

When the nested for loop ends, we have set the isPrime[] entries for all nonprimes
to be false and have left the isPrime[] entries for all primes as true. With one
more pass through the array, we can count the number of primes less than or equal
to N. As usual, it is easy to add code to print a trace. For programs such as Prime-
Sieve, you have to be a bit careful—it contains a nested for-if-for, so you have
to pay attention to the braces in order to put the print code in the correct place.
Note that we stop when i > N/i, just as we did for Factors.

With PrimeSieve, we can compute #(N) for large N, limited primarily by
the maximum array size allowed by Java. This is another example of a space-time
tradeoff. Programs like PrimeSieve play an important role in helping mathemati-
cians to develop the theory of numbers, which has many important applications.

i isPrime

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T T

2 T T F T F T F T F T F T F T F T F T F T F T F T

3 T T F T F T F F F T F T F F F T F T F F F T F T

5 T T F T F T F F F T F T F F F T F T F F F T F F

T T F T F T F F F T F T F F F T F T F F F T F F

Trace of java PrimeSieve 25

!"#$%&'(')!"*+,,,:2: ./01/23,,,0425,67

102 Elements of Programming

Two-dimensional arrays In many applications, a convenient way to store in-
formation is to use a table of numbers organized in a rectangular table and refer
to rows and columns in the table. For example, a teacher might need to maintain
a table with a row corresponding to each student and a column corresponding to
each assignment, a scientist might need to maintain a table of experimental data
with rows corresponding to experiments and columns corre-
sponding to various outcomes, or a programmer might want
to prepare an image for display by setting a table of pixels to
various grayscale values or colors.

The mathematical abstraction corresponding to such
tables is a matrix; the corresponding Java construct is a two-
dimensional array. You are likely to have already encountered
many applications of matrices and two-dimensional arrays,
and you will certainly encounter many others in science, in
engineering, and in computing applications, as we will dem-
onstrate with examples throughout this book. As with vectors
and one-dimensional arrays, many of the most important ap-
plications involve processing large amounts of data, and we
defer considering those applications until we consider input
and output, in SECTION 1.5.

Extending Java array constructs to handle two-dimen-
sional arrays is straightforward. To refer to the element in row i and column j of
a two-dimensional array a[][], we use the notation a[i][j]; to declare a two-di-
mensional array, we add another pair of brackets; and to create the array, we specify
the number of rows followed by the number of columns after the type name (both
within brackets), as follows:

double[][] a = new double[M][N];

We refer to such an array as an M-by-N array. By convention, the first dimension
is the number of rows and the second is the number of columns. As with one-
dimensional arrays, Java initializes all entries in arrays of numbers to zero and in
arrays of boolean values to false.

Initialization. Default initialization of two-dimensional arrays is useful because
it masks more code than for one-dimensional arrays. The following code is equiva-
lent to the single-line create-and-initialize idiom that we just considered:

Anatomy of a
two-dimensional array

99 85 98
98 57 78
92 77 76
94 32 11
99 34 22
90 46 54
76 59 88
92 66 89
97 71 24
89 29 38

row 1

column 2

a[1][2]

!"#$%&'(')!"*+,,,:20 ./01/23,,,0425,67

1031.4 Arrays

double[][] a;
a = new double[M][N];
for (int i = 0; i < M; i++)
{ // Initialize the ith row.
 for (int j = 0; j < N; j++)
 a[i][j] = 0.0;
}

This code is superfluous when initializing to zero, but the nested for loops are
needed to initialize to some other value(s). As you will see, this code is a model for
the code that we use to access or modify each element of a two-dimensional array.

Output. We use nested for loops for many array-processing operations. For ex-
ample, to print an M-by-N array in the familiar tabular format, we would use the
following code

for (int i = 0; i < M; i++)
{ // Print the ith row.
 for (int j = 0; j < N; j++)
 System.out.print(a[i][j] + " ");
 System.out.println();
}

regardless of the array elements’ type. If desired, we
could add code to embellish the output with row and
column numbers (see EXERCISE 1.4.6), but Java pro-
grammers typically tabulate arrays with row numbers
running top to bottom from 0 and column number
running left to right from 0. Generally, we also do so
and do not bother to use labels.

Memory representation. Java represents a two-di-
mensional array as an array of arrays. A matrix with
M rows and N columns is actually an array of length
M, each entry of which is an array of length N. In a
two-dimensional Java array a[][], we can use the code
a[i] to refer to the ith row (which is a one-dimen-
sional array), but we have no corresponding way to
refer to a column.

a[][]

a[0][0]

a[1][0]

a[2][0]

a[3][0]

a[0][1]

a[1][1]

a[2][1]

a[3][1]

a[0][2]

a[1][2]

a[2][2]

a[3][2]

a[4][0] a[4][1] a[4][2]

a[5][0] a[5][1] a[5][2]

a[6][0]

a[7][0]

a[6][1]

a[7][1]

a[6][2]

a[7][2]

a[8][0] a[8][1] a[8][2]

a[9][0] a[9][1] a[9][2]

A 10-by-3 array

a[5]

!"#$%&'(')!"*+,,,:2. ./01/23,,,0425,67

104 Elements of Programming

Setting values at compile time. The Java method for initial-
izing an array of values at compile time follows immediately
from the representation. A two-dimensional array is an array
of rows, each row initialized as a one-dimensional array. To
initialize a two-dimensional array, we enclose in braces a list
of terms to initialize the rows, separated by commas. Each
term in the list is itself a list: the values for the array elements
in the row, enclosed in braces and separated by commas.

Spreadsheets. One familiar use of arrays is a spreadsheet for
maintaining a table of numbers. For example, a teacher with
M students and N test grades for each student might main-
tain an (M +1)-by-(N +1) array, reserving the last column for
each student’s average grade and the last row for the average
test grades. Even though we typically do such computations
within specialized applications, it is worthwhile to study the
underlying code as an introduction to array processing. To compute the average
grade for each student (average values for each row), sum the entries for each row
and divide by N. The row-by-row order in which this code processes the matrix

Typical spreadsheet calculations

99 85 98 94
98 57 78 77
92 77 76 81
94 32 11 45
99 34 22 51
90 46 54 63
76 59 88 74
92 66 89 82
97 71 24 64
89 29 38 52
92 55 57

row
averages

in column N
N = 3

M = 10

column
averages
in row M

92+77+76
3

85+57+...+29
10

for (int i = 0; i < M; i++)
{ // Compute average for row i
 double sum = 0.0;
 for (int j = 0; j < N; j++)
 sum += a[i][j];
 a[i][N] = (int) Math.round(sum/N);
}

for (int j = 0; j < N; j++)
{ // Compute average for column j
 double sum = 0.0;
 for (int i = 0; i < M; i++)
 sum += a[i][j];
 a[M][j] = (int) Math.round(sum/M);
}

Compute row averages

Compute column averages

Compile-time initialization
of a two-dimensional array

int[][] a =
{
 { 99, 85, 98, 0 },
 { 98, 57, 78, 0 },
 { 92, 77, 76, 0 },
 { 94, 32, 11, 0 },
 { 99, 34, 22, 0 },
 { 90, 46, 54, 0 },
 { 76, 59, 88, 0 },
 { 92, 66, 89, 0 },
 { 97, 71, 24, 0 },
 { 89, 29, 38, 0 },
 { 0, 0, 0, 0 }
};

!"#$%&'(')!"*+,,,:2- ./01/23,,,0425,67

1051.4 Arrays

entries is known as row-major order. Similarly, to compute the average test grade
(average values for each column), sum the entries for each column and divide by
M. The column-by-column order in which this code processes the matrix entries is
known as column-major order.

Matrix operations. Typical applications in science and
engineering involve representing matrices as two-di-
mensional arrays and then implementing various math-
ematical operations with matrix operands. Again, even
though such processing is often done within specialized
applications, it is worthwhile for you to understand the
underlying computation. For example, we can add two
N-by-N matrices as follows:

 double[][] c = new double[N][N];
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 c[i][j] = a[i][j] + b[i][j];

Similarly, we can multiply two matrices. You may have
learned matrix multiplication, but if you do not recall or

are not familiar with it, the Java code below for square matrices is es-
sentially the same as the mathematical definition. Each entry c[i][j]
in the product of a[] and b[] is computed by taking the dot product
of row i of a[] with column j of b[].

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
{
 for (int j = 0; j < N; j++)
 {
 // Compute dot product of row i and column j.
 for (int k = 0; k < N; k++)
 c[i][j] += a[i][k]*b[k][j];
 }
}

The definition extends to matrices that are not necessarily square (see
EXERCISE 1.4.17). Matrix multiplication

.70 .20 .10

.30 .60 .10

.50 .10 .40

.59 .32 .41

.31 .36 .25

.45 .31 .42

row 1

c[1][2] = .3 *.5
 + .6 *.1
 + .1 *.4
 = .25

a[][]

c[][]

.80 .30 .50

.10 .40 .10

.10 .30 .40

column 2
b[][]

Matrix addition

.70 .20 .10

.30 .60 .10

.50 .10 .40

1.5 .50 .60
.40 1.0 .20
.60 .40 .80

c[1][2]

a[][]

c[][]

.80 .30 .50

.10 .40 .10

.10 .30 .40

b[][] b[1][2]

a[1][2]

!"#$%&'(')!"*+,,,:25 ./01/23,,,0425,67

106 Elements of Programming

Special cases of matrix multiplication. Two special cases of matrix multiplication
are important. These special cases occur when one of the dimensions of one of the
matrices is 1, so it may be viewed as a vector. We have matrix-vector multiplication,
where we multiply an M-by-N matrix by a column vector (an N-by-1 matrix) to get

an M-by-1 column vector result (each entry
in the result is the dot product of the corre-
sponding row in the matrix with the oper-
and vector). The second case is vector-matrix
multiplication, where we multiply a row vector
(a 1-by-M matrix) by an M-by-N matrix to
get a 1-by-N row vector result (each entry in
the result is the dot product of the operand
vector with the corresponding column in the
matrix). These operations provide a succinct
way to express numerous matrix calculations.
For example, the row-average computation
for such a spreadsheet with M rows and N
columns is equivalent to a matrix-vector
multiplication where the column vector has
M entries all equal to 1/M. Similarly, the col-
umn-average computation in such a spread-
sheet is equivalent to a vector-matrix multi-
plication where the row vector has N entries
all equal to 1/N. We return to vector-matrix
multiplication in the context of an important
application at the end of this chapter.

Ragged arrays. There is actually no require-
ment that all rows in a two-dimensional array
have the same length—an array with rows of
nonuniform length is known as a ragged array
(see EXERCISE 1.4.32 for an example applica-
tion). The possibility of ragged arrays creates
the need for more care in crafting array-pro-
cessing code. For example, this code prints
the contents of a ragged array:Matrix-vector and vector-matrix multiplication

99 85 98
98 57 78
92 77 76
94 32 11
99 34 22
90 46 54
76 59 88
92 66 89
97 71 24
89 29 38

94
77
81
45
51
63
74
82
64
52

row
averages

column
averages

for (int i = 0; i < M; i++)
{ // Dot product of row i and x[].
 for (int j = 0; j < N; j++)
 b[i] += a[i][j]*x[j];
}

for (int j = 0; j < N; j++)
{ // Dot product of y[] and column j.
 for (int i = 0; i < M; i++)
 c[j] += y[i]*a[i][j];
}

Matrix-vector multiplication a[][]*x[] = b[]

Vector-matrix multiplication y[]*a[][] = c[]

.33

.33

.33

a[][]

99 85 98
98 57 78
92 77 76
94 32 11
99 34 22
90 46 54
76 59 88
92 66 89
97 71 24
89 29 38

a[][]

y[]

x[]

b[]

c[] [92 55 57]

[.1 .1 .1 .1 .1 .1 .1 .1 .1 .1]

!"#$%&'(')!"*+,,,:28 ./01/23,,,0425,67

1071.4 Arrays

for (int i = 0; i < a.length; i++)
{
 for (int j = 0; j < a[i].length; j++)
 System.out.print(a[i][j] + " ");
 System.out.println();
}

This code tests your understanding of Java arrays, so you should take the time to
study it. In this book, we normally use square or rectangular arrays, whose dimen-
sion is given by a variable M or N. Code that uses a[i].length in this way is a clear
signal to you that an array is ragged.

Multidimensional arrays. The same notation extends to allow us to write code
using arrays that have any number of dimensions. For instance, we can declare and
initialize a three-dimensional array with the code

double[][][] a = new double[N][N][N];

and then refer to an entry with code like a[i][j][k], and so forth.

TWO-DIMENSIONAL ARRAYS PROVIDE A NATURAL REPRESENTATION for matrices, which are
omnipresent in science, mathematics, and engineering. They also provide a natural
way to organize large amounts of data, a key factor in spreadsheets and many other
computing applications. Through Cartesian coordinates, two- and three-dimen-
sional arrays also provide the basis for a models of the physical world. We consider
their use in all three arenas throughout this book.

Example: self-avoiding random walks Suppose that you leave
your dog in the middle of a large city whose streets form a familiar grid
pattern. We assume that there are N north-south streets and N east-west
streets all regularly spaced and fully intersecting in a pattern known as a
lattice. Trying to escape the city, the dog makes a random choice of which
way to go at each intersection, but knows by scent to avoid visiting any
place previously visited. But it is possible for the dog to get stuck in a
dead end where there is no choice but to revisit some intersection. What
is the chance that this will happen? This amusing problem is a simple
example of a famous model known as the self-avoiding random walk,
which has important scientific applications in the study of polymers and
in statistical mechanics, among many others. For example, you can see Self-avoiding walks

dead end

escape

!"#$%&'(')!"*+,,,:21 ./01/23,,,0425,67

108 Elements of Programming

that this process models a chain of material growing a bit at a time, until no growth
is possible. To better understand such processes, scientists seek to understand the
properties of self-avoiding walks.

The dog’s escape probability is certainly dependent on the size of the city. In
a tiny 5-by-5 city, it is easy to convince yourself that the dog is certain to escape.
But what are the chances of escape when the city is large? We are also interested in
other parameters. For example, how long is the dog’s path, on the average? How
often does the dog come within one block of a previous position other than the
one just left, on the average? How often does the dog come within one block of
escaping? These sorts of properties are important in the various applications just
mentioned.

SelfAvoidingWalk (PROGRAM 1.4.4) is a simulation of this situation that uses
a two-dimensional boolean array, where each entry represents an intersection. The
value true indicates that the dog has visited the intersection; false indicates that
the dog has not visited the intersection. The path starts in the center and takes ran-
dom steps to places not yet visited until getting stuck or escaping at a boundary. For
simplicity, the code is written so that if a random choice is made to go to a spot that
has already been visited, it takes no action, trusting that some subsequent random
choice will find a new place (which is assured because the code explicitly tests for a
dead end and leaves the loop in that case).

Note that the code depends on Java initializing all of the array entries to false
for each experiment. It also exhibits an important programming technique where
we code the loop exit test in the while statement as a guard against an illegal state-
ment in the body of the loop. In this case, the while loop continuation test serves
as a guard against an out-of-bounds array access within the loop. This corresponds
to checking whether the dog has escaped. Within the loop, a successful dead-end
test results in a break out of the loop.

As you can see from the sample runs, the unfortunate truth is that your dog
is nearly certain to get trapped in a dead end in a large city. If you are interested in
learning more about self-avoiding walks, you can find several suggestions in the ex-
ercises. For example, the dog is virtually certain to escape in the three-dimensional
version of the problem. While this is an intuitive result that is confirmed by our
tests, the development of a mathematical model that explains the behavior of self-
avoiding walks is a famous open problem: despite extensive research, no one knows
a succinct mathematical expression for the escape probability, the average length of
the path, or any other important parameter.

!"#$%&'(')!"*+,,,:29 ./01/23,,,0425,67

1091.4 Arrays

% java SelfAvoidingWalk 5 100
0% dead ends
% java SelfAvoidingWalk 20 100
36% dead ends
% java SelfAvoidingWalk 40 100
80% dead ends
% java SelfAvoidingWalk 80 100
98% dead ends
% java SelfAvoidingWalk 160 100
100% dead ends

Program 1.4.4 Self-avoiding random walks

public class SelfAvoidingWalk
{
 public static void main(String[] args)

 { // Do T random self-avoiding walks
 // in an N-by-N lattice
 int N = Integer.parseInt(args[0]);
 int T = Integer.parseInt(args[1]);
 int deadEnds = 0;
 for (int t = 0; t < T; t++)
 {
 boolean[][] a = new boolean[N][N];
 int x = N/2, y = N/2;
 while (x > 0 && x < N-1 && y > 0 && y < N-1)
 { // Check for dead end and make a random move.
 a[x][y] = true;
 if (a[x-1][y] && a[x+1][y] && a[x][y-1] && a[x][y+1])
 { deadEnds++; break; }
 double r = Math.random();
 if (r < 0.25) { if (!a[x+1][y]) x++; }
 else if (r < 0.50) { if (!a[x-1][y]) x--; }
 else if (r < 0.75) { if (!a[x][y+1]) y++; }
 else if (r < 1.00) { if (!a[x][y-1]) y--; }
 }
 }
 System.out.println(100*deadEnds/T + "% dead ends");
 }
}

This program takes command-line arguments N and T and computes T self-avoiding walks in
an N-by-N lattice. For each walk, it creates a boolean array, starts the walk in the center, and
continues until either a dead end or a boundary is reached. The result of the computation is the
percentage of dead ends. As usual, increasing the number of experiments increases the precision
of the results.

N lattice size
T number of trials

deadEnds trials resulting in a dead end

a[][] intersections visited

x, y current position

r random number in (0, 1)

% java SelfAvoidingWalk 5 1000
0% dead ends
% java SelfAvoidingWalk 20 1000
32% dead ends
% java SelfAvoidingWalk 40 1000
70% dead ends
% java SelfAvoidingWalk 80 1000
95% dead ends
% java SelfAvoidingWalk 160 1000
100% dead ends

!"#$%&'(')!"*+,,,:23 ./01/23,,,0425,67

110 Elements of Programming

Self-avoiding random walks in a 21-by-21 grid

!"#$%&'(')!"*+,,,::2 ./01/23,,,0425,67

1111.4 Arrays

Summary Arrays are the fourth basic element (after assignments, conditionals,
and loops) found in virtually every programming language, completing our cover-
age of basic Java constructs. As you have seen with the sample programs that we
have presented, you can write programs that can solve all sorts of problems using
just these constructs.

Arrays are prominent in many of the programs that we consider, and the basic
operations that we have discussed here will serve you well in addressing many pro-
gramming tasks. When you are not using arrays explicitly (and you are sure to be
doing so frequently), you will be using them implicitly, because all computers have
a memory that is conceptually equivalent to an indexed array.

The fundamental ingredient that arrays add to our programs is a potentially
huge increase in the size of a program’s state. The state of a program can be defined
as the information you need to know to understand what a program is doing. In a
program without arrays, if you know the values of the variables and which state-
ment is the next to be executed, you can normally determine what the program
will do next. When we trace a program, we are essentially tracking its state. When
a program uses arrays, however, there can be too huge a number of values (each of
which might be changed in each statement) for us to effectively track them all. This
difference makes writing programs with arrays more of a challenge than writing
programs without them.

Arrays directly represent vectors and matrices, so they are of direct use in
computations associated with many basic problems in science and engineering. Ar-
rays also provide a succinct notation for manipulating a potentially huge amount
of data in a uniform way, so they play a critical role in any application that involves
processing large amounts of data, as you will see throughout this book.

!"#$%&'(')!"*+,,,::: ./01/23,,,0425,67

112 Elements of Programming

Q&A

Q. Some Java programmers use int a[] instead of int[] a to declare arrays. What’s
the difference?

A. In Java, both are legal and equivalent. The former is how arrays are declared in
C. The latter is the preferred style in Java since the type of the variable int[] more
clearly indicates that it is an array of integers.

Q. Why do array indices start at 0 instead of 1?

A. This convention originated with machine-language programming, where the
address of an array element would be computed by adding the index to the address
of the beginning of an array. Starting indices at 1 would entail either a waste of
space at the beginning of the array or a waste of time to subtract the 1.

Q. What happens if I use a negative number to index an array?

A. The same thing as when you use an index that is too big. Whenever a program
attempts to index an array with an index that is not between zero and the array
length minus one, Java will issue an ArrayIndexOutOfBoundsException and ter-
minate the program.

Q. What happens when I compare two arrays with (a == b)?

A. The expression evaluates to true only if a[] and b[] refer to the same array, not
if they have the same sequence of elements. Unfortunately, this is rarely what you
want.

Q. If a[] is an array, why does System.out.println(a) print out a hexadecimal
integer, like @f62373 , instead of the elements of the array?

A. Good question. It is printing out the memory address of the array, which, un-
fortunately, is rarely what you want.

Q. What other pitfalls should I watch out for when using arrays?

A. It is very important to remember that Java always initializes arrays when you
create them, so that creating an array takes time proportional to the size of the array.

!"#$%&'(')!"*+,,,::0 ./01/23,,,0425,67

1131.4 Arrays

Exercises

1.4.1 Write a program that declares and initializes an array a[] of size 1000 and
accesses a[1000]. Does your program compile? What happens when you run it?

1.4.2 Describe and explain what happens when you try to compile a program
with the following statement:

int N = 1000;
int[] a = new int[N*N*N*N];

1.4.3 Given two vectors of length N that are represented with one-dimensional
arrays, write a code fragment that computes the Euclidean distance between them
(the square root of the sums of the squares of the differences between correspond-
ing entries).

1.4.4 Write a code fragment that reverses the order of a one-dimensional array
a[] of String values. Do not create another array to hold the result. Hint : Use the
code in the text for exchanging two elements.

1.4.5 What is wrong with the following code fragment?

int[] a;
for (int i = 0; i < 10; i++)
 a[i] = i * i;

Solution. It does not allocate memory for a[] with new. This code results in a
variable a might not have been initialized compile-time error.

1.4.6 Write a code fragment that prints the contents of a two-dimensional bool-
ean array, using * to represent true and a space to represent false. Include row and
column numbers.

1.4.7 What does the following code fragment print?

int[] a = new int[10];
for (int i = 0; i < 10; i++)
 a[i] = 9 - i;
for (int i = 0; i < 10; i++)
 a[i] = a[a[i]];
for (int i = 0; i < 10; i++)
 System.out.println(a[i]);

!"#$%&'(')!"*+,,,::. ./01/23,,,0425,67

114 Elements of Programming

1.4.8 What values does the following code put in the array a[]?

int N = 10;
int[] a = new int[N];
a[0] = 1;
a[1] = 1;
for (int i = 2; i < N; i++)
 a[i] = a[i-1] + a[i-2];

1.4.9 What does the following code fragment print?

int[] a = { 1, 2, 3 };
int[] b = { 1, 2, 3 };
System.out.println(a == b);

1.4.10 Write a program Deal that takes an command-line argument N and prints
N poker hands (five cards each) from a shuffled deck, separated by blank lines.

1.4.11 Write code fragments to create a two-dimensional array b[][] that is a
copy of an existing two-dimensional array a[][], under each of the following as-
sumptions:

a. a[][] is square

b. a[][] is rectangular

c. a[][] may be ragged
Your solution to b should work for a, and your solution to c should work for both
b and a, but your code should get progressively more complicated.

1.4.12 Write a code fragment to print the transposition (rows and columns
changed) of a square two-dimensional array. For the example spreadsheet array in
the text, you code would print the following:

99 98 92 94 99 90 76 92 97 89
85 57 77 32 34 46 59 66 71 29
98 78 76 11 22 54 88 89 24 38

1.4.13 Write a code fragment to transpose a square two-dimensional array in place
without creating a second array.

!"#$%&'(')!"*+,,,::- ./01/23,,,0425,67

1151.4 Arrays

1.4.14 Write a program that takes an integer N from the command line and cre-
ates an N-by-N boolean array a[][] such that a[i][j] is true if i and j are rela-
tively prime (have no common factors), and false otherwise. Use your solution to
EXERCISE 1.4.6 to print the array. Hint: Use sieving.

1.4.15 Write a program that computes the product of two square matrices of
boolean values, using the or operation instead of + and the and operation instead
of *.

1.4.16 Modify the spreadsheet code fragment in the text to compute a weighted
average of the rows, where the weights of each test score are in a one-dimensional
array weights[]. For example, to assign the last of the three tests in our example to
be twice the weight of the others, you would use

double[] weights = { .25, .25, .50 };

Note that the weights should sum to 1.

1.4.17 Write a code fragment to multiply two rectangular matrices that are not
necessarily square. Note: For the dot product to be well-defined, the number of col-
umns in the first matrix must be equal to the number of rows in the second matrix.
Print an error message if the dimensions do not satisfy this condition.

1.4.18 Modify SelfAvoidingWalk (PROGRAM 1.4.4) to calculate and print the av-
erage length of the paths as well as the dead-end probability. Keep separate the
average lengths of escape paths and dead-end paths.

1.4.19 Modify SelfAvoidingWalk to calculate and print the average area of the
smallest axis-oriented rectangle that encloses the path. Keep separate statistics for
escape paths and dead-end paths.

!"#$%&'(')!"*+,,,::5 ./01/23,,,0425,67

116 Elements of Programming

Creative Exercises

1.4.20 Dice simulation. The following code computes the exact probability distri-
bution for the sum of two dice:

double[] dist = new double[13];
for (int i = 1; i <= 6; i++)
 for (int j = 1; j <= 6; j++)
 dist[i+j] += 1.0;

for (int k = 1; k <= 12; k++)
 dist[k] /= 36.0;

The value dist[k] is the probability that the dice sum to k. Run experiments to
validate this calculation simulating N dice throws, keeping track of the frequencies
of occurrence of each value when you compute the sum of two random integers
between 1 and 6. How large does N have to be before your empirical results match
the exact results to three decimal places?

1.4.21 Longest plateau. Given an array of integers, find the length and location of
the longest contiguous sequence of equal values where the values of the elements
just before and just after this sequence are smaller.

1.4.22 Empirical shuffle check. Run computational experiments to check that our
shuffling code works as advertised. Write a program ShuffleTest that takes com-
mand-line arguments M and N, does N shuffles of an array of size M that is initial-
ized with a[i] = i before each shuffle, and prints an M-by-M table such that row
i gives the number of times i wound up in position j for all j. All entries in the
array should be close to N/M.

1.4.23 Bad shuffling. Suppose that you choose a random integer between 0 and
N-1 in our shuffling code instead of one between i and N-1. Show that the resulting
order is not equally likely to be one of the N! possibilities. Run the test of the previ-
ous exercise for this version.

1.4.24 Music shuffling. You set your music player to shuffle mode. It plays each of
the N songs before repeating any. Write a program to estimate the likelihood that
you will not hear any sequential pair of songs (that is, song 3 does not follow song
2, song 10 does not follow song 9, and so on).

!"#$%&'(')!"*+,,,::8 ./01/23,,,0425,67

1171.4 Arrays

1.4.24 Minima in permutations. Write a program that takes an integer N from
the command line, generates a random permutation, prints the permutation, and
prints the number of left-to-right minima in the permutation (the number of times
an element is the smallest seen so far). Then write a program that takes integers M
and N from the command line, generates M random permutations of size N, and
prints the average number of left-to-right minima in the permutations generated.
Extra credit : Formulate a hypothesis about the number of left-to-right minima in
a permutation of size N, as a function of N.

1.4.25 Inverse permutation. Write a program that reads in a permutation of the
integers 0 to N-1 from N command-line arguments and prints the inverse permu-
tation. (If the permutation is in an array a[], its inverse is the array b[] such that
a[b[i]] = b[a[i]] = i.) Be sure to check that the input is a valid permutation.

1.4.26 Hadamard matrix. The N-by-N Hadamard matrix H(N) is a boolean ma-
trix with the remarkable property that any two rows differ in exactly N/2 entries.
(This property makes it useful for designing error-correcting codes.) H(1) is a
1-by-1 matrix with the single entry true, and for N>1, H(2N) is obtained by align-
ing four copies of H(N) in a large square, and then inverting all of the entries in the
lower right N-by-N copy, as shown in the following examples (with T representing
true and F representing false, as usual).

H(1) H(2) H(4)
T T T T T T T

T F T F T F

T T F F

T F F T

Write a program that takes one command-line argument N and prints H(N). As-
sume that N is a power of 2.

1.4.27 Rumors. Alice is throwing a party with N other guests, including Bob. Bob
starts a rumor about Alice by telling it to one of the other guests. A person hearing
this rumor for the first time will immediately tell it to one other guest, chosen at
random from all the people at the party except Alice and the person from whom

!"#$%&'(')!"*+,,,::1 ./01/23,,,0425,67

118 Elements of Programming

they heard it. If a person (including Bob) hears the rumor for a second time, he or
she will not propagate it further. Write a program to estimate the probability that
everyone at the party (except Alice) will hear the rumor before it stops propagating.
Also calculate an estimate of the expected number of people to hear the rumor.

1.4.28 Find a duplicate. Given an array of N elements with each element between
1 and N, write an algorithm to determine whether there are any duplicates. You do
not need to preserve the contents of the given array, but do not use an extra array.

1.4.29 Counting primes. Compare PrimeSieve with the method that we used to
demonstrate the break statement, at the end of SECTION 1.3. This is a classic example
of a time-space tradeoff: PrimeSieve is fast, but requires a boolean array of size
N; the other approach uses only two integer variables, but is substantially slower.
Estimate the magnitude of this difference by finding the value of N for which this
second approach can complete the computation in about the same time as java
PrimeSeive 1000000.

1.4.30 Minesweeper. Write a program that takes 3 command-line arguments M,
N, and p and produces an M-by-N boolean array where each entry is occupied with
probability p. In the minesweeper game, occupied cells represent bombs and empty
cells represent safe cells. Print out the array using an asterisk for bombs and a period
for safe cells. Then, replace each safe square with the number of neighboring bombs
(above, below, left, right, or diagonal) and print out the solution.

* * . . . * * 1 0 0
. 3 3 2 0 0
. * . . . 1 * 1 0 0

Try to write your code so that you have as few special cases as possible to deal with,
by using an (M"2)-by-(N"2) boolean array.

1.4.31 Self-avoiding walk length. Suppose that there is no limit on the size of the
grid. Run experiments to estimate the average walk length.

1.4.32 Three-dimensional self-avoiding walks. Run experiments to verify that the
dead-end probability is 0 for a three-dimensional self-avoiding walk and to com-
pute the average walk length for various values of N.

!"#$%&'(')!"*+,,,::9 ./01/23,,,0425,67

1191.4 Arrays

1.4.33 Random walkers. Suppose that N random walkers, starting in the center
of an N-by-N grid, move one step at a time, choosing to go left, right, up, or down
with equal probability at each step. Write a program to help formulate and test a
hypothesis about the number of steps taken before all cells are touched.

1.4.34 Bridge hands. In the game of bridge, four players are dealt hands of 13
cards each. An important statistic is the distribution of the number of cards in each
suit in a hand. Which is the most likely, 5-3-3-2, 4-4-3-2, or 4-3-3-3?

1.4.35 Birthday problem. Suppose that people enter an empty room until a pair
of people share a birthday. On average, how many people will have to enter before
there is a match? Run experiments to estimate the value of this quantity. Assume
birthdays to be uniform random integers between 0 and 364.

1.4.36 Coupon collector. Run experiments to validate the classical mathematical
result that the expected number of coupons needed to collect N values is about
NHN. For example, if you are observing the cards carefully at the blackjack table
(and the dealer has enough decks randomly shuffled together), you will wait until
about 235 cards are dealt, on average, before seeing every card value.

1.4.37 Binomial coefficients. Write a program that builds and prints a two-dimen-
sional ragged array a such that a[N][k] contains the probability that you get exactly
k heads when you toss a coin N times. Take a command-line argument to specify the
maximum value of N. These numbers are known as the binomial distribution: if you
multiply each entry in row i by 2 N, you get the binomial coefficients (the coefficients
of x k in (x+1)N) arranged in Pascal’s triangle. To compute them, start with a[N][0]
= 0 for all N and a[1][1] = 1, then compute values in successive rows, left to right,
with a[N][k] = (a[N-1][k] + a[N-1][k-1])/2.

Pascal’s triangle binomial distribution
1 1

1 1 1/2 1/2

1 2 1 1/4 1/2 1/4

1 3 3 1 1/8 3/8 3/8 1/8

1 4 6 4 1 1/16 1/4 3/8 1/4 1/16

!"#$%&'(')!"*+,,,::3 ./01/23,,,0425,67

Elements of Programming

1.5 Input and Output

IN THIS SECTION WE EXTEND THE set of simple abstractions (command-line input and
standard output) that we have been using as the interface between our Java pro-
grams and the outside world to include
standard input, standard drawing, and
standard audio. Standard input makes it
convenient for us to write programs that
process arbitrary amounts of input and
to interact with our programs; standard
drawing makes it possible for us to work
with graphical representations of images,
freeing us from having to encode every-
thing as text; and standard audio adds
sound. These extensions are easy to use, and you will find that they bring you to yet
another new world of programming.

The abbreviation I/O is universally understood to mean input/output, a col-
lective term that refers to the mechanisms by which programs communicate with
the outside world. Your computer’s operating system controls the physical devices
that are connected to your computer. To implement the standard I/O abstractions,
we use libraries of methods that interface to the operating system.

You have already been accepting argument values from the command line
and printing strings in a terminal window; the purpose of this section is to provide
you with a much richer set of tools for processing and presenting data. Like the
System.out.print() and System.out.println() methods that you have been
using, these methods do not implement mathematical functions—their purpose is
to cause some side effect, either on an input device or an output device. Our prime
concern is using such devices to get information into and out of our programs.

An essential feature of standard I/O mechanisms is that there is no limit on
the amount of input or output data, from the point of view of the program. Your
programs can consume input or produce output indefinitely.

One use of standard I/O mechanisms is to connect your programs to files on
your computer’s disk. It is easy to connect standard input, standard output, stan-
dard drawing, and standard audio to files. Such connections make it easy to have
your Java programs save or load results to files for archival purposes or for later
reference by other programs or other applications.

1.5.1 Generating a random sequence . . . 122
1.5.2 Interactive user input 129
1.5.3 Averaging a stream of numbers . . . 130
1.5.4 A simple filter 134
1.5.5 Input-to-drawing filter 139
1.5.6 Bouncing ball 145
1.5.7 Digital signal processing 150

 Programs in this section

!"#$%&'(')!"*+,,,:02 ./01/23,,,0425,67

1211.5 Input and Output

Bird’s-eye view The conventional model that we have been using for Java pro-
gramming has served us since SECTION 1.1. To build context, we begin by briefly
reviewing the model.

A Java program takes input values from the command line and prints a string
of characters as output. By default, both command-line input and standard output
are associated with the application that takes commands (the one in which you
have been typing the java and javac commands). We use the generic term termi-
nal window to refer to this application. This model has proven to be a convenient
and direct way for us to interact with our programs and data.

Command-line input. This mechanism, which we have been using to provide
input values to our programs, is a standard part of Java programming. All classes
have a main() method that takes a String array args[] as its argument. That ar-
ray is the sequence of command-line arguments that we type, provided to Java by
the operating system. By convention, both Java and the operating system process
the arguments as strings, so if we intend for an argument to be a number, we use
a method such as Integer.parseInt() or Double.parseDouble() to convert it
from String to the appropriate type.

Standard output. To print output values in our programs, we have been using
the system methods System.out.println() and System.out.print(). Java puts
the results of a program’s sequence of calls on these methods into the form of an
abstract stream of characters known as standard output. By default, the operating
system connects standard output to the terminal window. All of the output in our
programs so far has been appearing in the terminal window.

For reference, and as a starting point, RandomSeq (PROGRAM 1.5.1) is a program
that uses this model. It takes a command-line argument N and produces an output
sequence of N random numbers between 0 and 1.

NOW WE ARE GOING TO COMPLEMENT command-line input and standard output with
three additional mechanisms that address their limitations and provide us with a
far more useful programming model. These mechanisms give us a new bird’s-eye
view of a Java program in which the program converts a standard input stream and
a sequence of command-line arguments into a standard output stream, a standard
drawing, and a standard audio stream.

!"#$%&'(')!"*+,,,:0: ./01/23,,,0425,67

122 Elements of Programming

Standard input. Our class StdIn is a library that implements a standard input
abstraction to complement the standard output abstraction. Just as you can print
a value to standard output at any time during the execution of your program, you
can read a value from a standard input stream at any time.

Standard drawing. Our class StdDraw allows you to create drawings with your
programs. It uses a simple graphics model that allows you to create drawings con-
sisting of points and lines in a window on your computer. StdDraw also includes
facilities for text, color, and animation.

Standard audio. Our class StdAudio allows you to create sound with your pro-
grams. It uses a standard format to convert arrays of numbers into sound.

% java RandomSeq 1000000
0.2498362534343327
0.5578468691774513
0.5702167639727175
0.32191774192688727
0.6865902823177537
...

Program 1.5.1 Generating a random sequence

public class RandomSeq
{
 public static void main(String[] args)
 { // Print a random sequence of N real values in [0, 1)
 int N = Integer.parseInt(args[0]);
 for (int i = 0; i < N; i++)
 System.out.println(Math.random());
 }
}

This program illustrates the conventional model that we have been using so far for Java pro-
gramming. It takes a command-line argument N and prints N random numbers between 0 and
1. From the program’s point of view, there is no limit on the length of the output sequence.

!"#$%&'(')!"*+,,,:00 ./01/23,,,0425,67

1231.5 Input and Output

To use both command-line input and standard output, you have been using built-in
Java facilities. Java also has built-in facilities that support abstractions like standard
input, standard draw, and standard audio, but they are somewhat more complicated
to use, so we have developed a simpler interface
to them in our StdIn, StdDraw, and StdAudio li-
braries. To logically complete our programming
model, we also include a StdOut library. To use
these libraries, download StdIn.java, StdOut.
java, StdDraw.java, and StdAudio.java and
place them in the same directory as your pro-
gram (or use one of the other mechanisms for
sharing libraries described on the booksite).

The standard input and standard output
abstractions date back to the development of
the UNIX operating system in the 1970s and are
found in some form on all modern systems. Al-
though they are primitive by comparison to vari-
ous mechanisms developed since, modern programmers still depend on them as a
reliable way to connect data to programs. We have developed for this book standard
draw and standard audio in the same spirit as these earlier abstractions to provide
you with an easy way to produce visual and aural output.

Standard output Java’s System.out.print() and System.out.println()
methods implement the basic standard output abstraction that we need. Never-
theless, to treat standard input and standard output in a uniform manner (and
to provide a few technical improvements), starting in this section and continuing
through the rest of the book, we use similar methods that are defined in our StdOut
library. StdOut.print() and StdOut.println() are nearly the same as the Java
methods that you have been using (see the booksite for a discussion of the differ-
ences, which need not concern you now). The StdOut.printf() method is a main
topic of this section and will be of interest to you now because it gives you more
control over the appearance of the output. It was a feature of the C language of the
early 1970s that still survives in modern languages because it is so useful.

Since the first time that we printed double values, we have been distracted by
excessive precision in the printed output. For example, when we use System.out.
print(Math.PI) we get the output 3.141592653589793, even though we might

standard input command-line
arguments

standard output

standard drawing

standard audio

A bird’s-eye view of a Java program (revisited)

!"#$%&'(')!"*+,,,:0. ./01/23,,,0425,67

124 Elements of Programming

prefer to see 3.14 or 3.14159. The print() and println() methods present each
number to 15 decimal places even when we would be happy with just a few digits
of precision. The printf() method is more flexible: it allows us to specify the
number of digits and the precision when converting data type values to strings for
output. With printf(), we can write StdOut.printf("%7.5f", Math.PI) to get
3.14159, and we can replace System.out.print(t) with

StdOut.printf("The square root of %.1f is %.6f", c, t);

in Newton (PROGRAM 1.3.6) to get output like

The square root of 2.0 is 1.414214

Next, we describe the meaning and operation of these statements, along with ex-
tensions to handle the other built-in types of data.

Formatted printing basics. In its simplest form, printf() takes two arguments.
The first argument is a format string that describes how to convert the second ar-
gument into a string for output. The simplest type of format string begins with %
and ends with a one-letter conversion code. The conversion codes that we use most
frequently are d (for decimal values from Java’s integer types), f (for floating-point

values), and s (for String values). Between the %
and the conversion code is an integer that specifies
the field width of the converted value (the number
of characters in the converted output string). By
default, blanks are added on the left to make the
length of the converted output equal to the field
width; if we want the blanks on the right, we can
insert a minus sign before the field width. (If the

format
string

Anatomy of a formatted print statement

StdOut.printf(" % 7 . 5 f " , Math.PI)

number to print

conversion codefield width
precision

public class StdOut

void print(String s) print s

void println(String s) print s, followed by newline

void println() print a new line

void printf(String f, ...) formatted print

API for our library of static methods for standard output

!"#$%&'(')!"*+,,,:0- ./01/23,,,0425,67

1251.5 Input and Output

converted output string is larger than the field width, the field width is ignored.)
Following the width, we have the option of including a period followed by the
number of digits to put after the decimal point (the precision) for a double value
or the number of characters to take from the beginning of the string for a String
value. The most important thing to remember about using printf() is that the
conversion code in the format and the type of the corresponding argument must match.
That is, Java must be able to convert from the type of the argument to the type re-
quired by the conversion code. Every type of data can be converted to String, but
if you write StdOut.printf("%12d", Math.PI) or StdOut.printf("%4.2f",
512), you will get an IllegalFormatConversionException run-time error.

Format string. The first argument of printf() is a String that may contain
characters other than a format string. Any part of the argument that is not part of a
format string passes through to the output, with the format string replaced by the
argument value (converted to a string as specified). For example, the statement

StdOut.printf("PI is approximately %.2f\n", Math.PI);

prints the line

PI is approximately 3.14

Note that we need to explicitly include the newline character \n in the argument in
order to print a new line with printf().

type code typical
literal

sample
format strings

converted string
values for output

int d 512 "%14d"
"%-14d"

" 512"
"512 "

double
f

1595.1680010754388
"%14.2f"
"%.7f"
"%14.4e"

" 1595.17"
"1595.1680011"
" 1.5952e+03"e

String s "Hello, World"
"%14s"
"%-14s"
"%-14.5s"

" Hello, World"
"Hello, World "
"Hello "

Format conventions for printf() (see the booksite for many other options)

!"#$%&'(')!"*+,,,:05 ./01/23,,,0425,67

126 Elements of Programming

Multiple arguments. The printf() function can take more than two arguments.
In this case, the format string will have a format specifier for each additional argu-
ment, perhaps separated by other characters to pass through to the output. For
example, if you were making payments on a loan, you might use code whose inner
loop contains the statements

String formats = "%3s $%6.2f $%7.2f $%5.2f\n";
StdOut.printf(formats, month[i], pay, balance, interest);

to print the second and subsequent lines in a table like this (see EXERCISE 1.5.14):

 payment balance interest
Jan $299.00 $9742.67 $41.67
Feb $299.00 $9484.26 $40.59
Mar $299.00 $9224.78 $39.52
...

Formatted printing is convenient because this sort of code is much more compact
than the string-concatenation code that we have been using.

Standard input Our StdIn library takes data from a standard input stream that
may be empty or may contain a sequence of values separated by whitespace (spaces,
tabs, newline characters, and the like). Each value is a String or a value from one of
Java’s primitive types. One of the key features of the standard input stream is that
your program consumes values when it reads them. Once your program has read
a value, it cannot back up and read it again. This assumption is restrictive, but it
reflects physical characteristics of some input devices and simplifies implementing
the abstraction. The library consists of the nine methods: isEmpty(), readInt(),
readDouble(), readLong(), readBoolean(), readChar(), readString(), read-
Line(), and readAll(). Within the input stream model, these methods are large-
ly self-documenting (the names describe their effect), but their precise operation is
worthy of careful consideration, so we will consider several examples in detail.

Typing input. When you use the java command to invoke a Java program from
the command line, you actually are doing three things: issuing a command to start
executing your program, specifying the values of the command line arguments,
and beginning to define the standard input stream. The string of characters that
you type in the terminal window after the command line is the standard input
stream. When you type characters, you are interacting with your program. The

!"#$%&'(')!"*+,,,:08 ./01/23,,,0425,67

1271.5 Input and Output

program waits for you to create the standard input stream. For example, consider
the following program, which takes a command-line argument N, then reads N
numbers from standard input and adds them:

public class AddInts
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 int sum = 0;
 for (int i = 0; i < N; i++)
 {
 int value = StdIn.readInt();
 sum += value;
 }
 StdOut.println("Sum is " + sum);
 }
}

When you type java AddInts 4, after the program takes the command-line argu-
ment, it calls the method StdIn.readInt() and waits for you to type an integer.
Suppose that you want 144 to be the first value. As you type 1, then 4, and then 4,
nothing happens, because StdIn does not know that you are done typing the in-
teger. But when you then type <return> to signify the end of your integer, StdIn.
readInt() immediately returns the value 144, which your program adds to sum

public class StdIn

boolean isEmpty() true if no more values, false otherwise

int readInt() read a value of type int

double readDouble() read a value of type double

long readLong() read a value of type long

boolean readBoolean() read a value of type boolean

char readChar() read a value of type char

String readString() read a value of type String

String readLine() read the rest of the line

String readAll() read the rest of the text

API for our library of static methods for standard input

!"#$%&'(')!"*+,,,:01 ./01/23,,,0425,67

128 Elements of Programming

and then calls StdIn.readInt() again. Again, nothing happens until you type the
second value: if you type 2, then 3, then 3, and then <return> to end the number,
StdIn.readInt() returns the value 233, which your program again adds to sum.
After you have typed four numbers in this way, AddInts expects no more input and
prints out the sum, as desired.

Input format. If you type abc or 12.2 or true when
StdIn.readInt() is expecting an int, it will respond
with a NumberFormatException. The format for each
type is the same as you have been using for literal val-
ues within Java programs. For convenience, StdIn treats
strings of consecutive whitespace characters as identical
to one space and allows you to delimit your numbers
with such strings. It does not matter how many spaces
you put between numbers, or whether you enter num-
bers on one line or separate them with tab characters
or spread them out over several lines, (except that your
terminal application processes standard input one line at a time, so it will wait un-
til you type <return> before sending all of the numbers on that line to standard
input). You can mix values of different types in an input stream, but whenever the
program expects a value of a particular type, the input stream must have a value
of that type.

Interactive user input. TwentyQuestions (PROGRAM 1.5.2) is a simple example
of a program that interacts with its user. The program generates a random integer
and then gives clues to a user trying to guess the number. (As a side note: by using
binary search, you can always get to the answer in at most twenty questions. See
SECTION 4.2.) The fundamental difference between this program and others that
we have written is that the user has the ability to change the control flow while the
program is executing. This capability was very important in early applications of
computing, but we rarely write such programs nowadays because modern applica-
tions typically take such input through the graphical user interface, as discussed
in CHAPTER 3. Even a simple program like TwentyQuestions illustrates that writ-
ing programs that support user interaction is potentially very difficult because you
have to plan for all possible user inputs.

command line

standard output stream

Anatomy of a command

% java AddInts 4

144

233

377

1024

Sum is 1778

standard input stream

command-line
argument

!"#$%&'(')!"*+,,,:09 ./01/23,,,0425,67

1291.5 Input and Output

% java TwentyQuestions
I’m thinking of a number between 1 and 1,000,000
What’s your guess? 500000
Too high
What’s your guess? 250000
Too low
What’s your guess? 375000
Too high
What’s your guess? 312500
Too high
What’s your guess? 300500
Too low
...

Program 1.5.2 Interactive user input

public class TwentyQuestions
{
 public static void main(String[] args)
 { // Generate a number and answer questions
 // while the user tries to guess the value.
 int N = 1 + (int) (Math.random() * 1000000);
 StdOut.print("I'm thinking of a number ");
 StdOut.println("between 1 and 1,000,000");
 int m = 0;
 while (m != N)
 { // Solicit one guess and provide one answer
 StdOut.print("What's your guess? ");
 m = StdIn.readInt();
 if (m == N) StdOut.println("You win!");
 if (m < N) StdOut.println("Too low ");
 if (m > N) StdOut.println("Too high");
 }
 }
}

This program plays a simple guessing game. You type numbers, each of which is an implicit
question (“Is this the number?”) and the program tells you whether your guess is too high or
too low. You can always get it to print You win! with less than twenty questions. To use this
program, you need to first download StdIn.java and StdOut.java into the same directory
as this code (which is in a file named TwentyQuestions.java).

N hidden value
m user’s guess

!"#$%&'(')!"*+,,,:03 ./01/23,,,0425,67

130 Elements of Programming

Processing an arbitrary-size input stream. Typically, input streams are finite:
your program marches through the input stream, consuming values until the
stream is empty. But there is no restriction of the size of the input stream, and some
programs simply process all the input presented to them. Average (PROGRAM 1.5.3)
is an example that reads in a sequence of real numbers from standard input and
prints their average. It illustrates a key property of using an input stream: the length

% java Average
10.0 5.0 6.0
3.0
7.0 32.0
<ctrl-d>
Average is 10.5

% java RandomSeq 100000 > data.txt
% java Average < data.txt
Average is 0.5010473676174824

% java RandomSeq 100000 | java Average
Average is 0.5000499417963857

Program 1.5.3 Averaging a stream of numbers

public class Average
{
 public static void main(String[] args)
 { // Average the numbers on the input stream.
 double sum = 0.0;
 int cnt = 0;
 while (!StdIn.isEmpty())
 { // Read a number and cumulate the sum.
 double value = StdIn.readDouble();
 sum += value;
 cnt++;
 }
 double average = sum / cnt;
 StdOut.println("Average is " + average);
 }
}

This program reads in a sequence of real numbers from standard input and prints their average
on standard output (provided that the sum does not overflow). From its point of view, there is
no limit on the size of the input stream. The commands on the right below use redirection and
piping (discussed in the next subsection) to provide 100,000 numbers to average.

cnt count of numbers read
sum cumulated sum

!"#$%&'(')!"*+,,,:.2 ./01/23,,,0425,67

1311.5 Input and Output

of the stream is not known to the program. We type all the numbers that we have,
and then the program averages them. Before reading each number, the program
uses the method StdIn.isEmpty() to check whether there are any more numbers
in the input stream. How do we signal that we have no more data to type? By con-
vention, we type a special sequence of characters known as the end-of-file sequence.
Unfortunately, the terminal applications that we typically encounter on modern
operating systems use different conventions for this critically important sequence.
In this book, we use <ctrl-d> (many systems require <ctrl-d> to be on a line by
itself); the other widely used convention is <ctrl-z> on a line by itself. Average
is a simple program, but it represents a profound new capability in programming:
with standard input, we can write programs that process an unlimited amount of
data. As you will see, writing such programs is an effective approach for numerous
data-processing applications.

STANDARD INPUT IS A SUBSTANTIAL STEP up from the command-line input model that
we have been using, for two reasons, as illustrated by TwentyQuestions and Aver-
age. First, we can interact with our program—with command-line arguments, we
can only provide data to the program before it begins execution. Second, we can
read in large amounts of data—with command-line arguments, we can only enter
values that fit on the command line. Indeed, as illustrated by Average, the amount
of data can be potentially unlimited, and many programs are made simpler by that
assumption. A third raison d’être for standard input is that your operating system
makes it possible to change the source of standard input, so that you do not have to
type all the input. Next, we consider the mechanisms that enable this possibility.

Redirection and piping For many applications, typing input data as a stan-
dard input stream from the terminal window is untenable because our program’s
processing power is then limited by the amount of data that we can type (and our
typing speed). Similarly, we often want to save the information printed on the stan-
dard output stream for later use. To address such limitations, we next focus on the
idea that standard input is an abstraction—the program just expects its input and
has no dependence on the source of the input stream. Standard output is a similar
abstraction. The power of these abstractions derives from our ability (through the
operating system) to specify various other sources for standard input and standard
output, such as a file, the network, or another program. All modern operating sys-
tems implement these mechanisms.

!"#$%&'(')!"*+,,,:.: ./01/23,,,0425,67

132 Elements of Programming

Redirecting standard output to a file. By adding a simple directive to the com-
mand that invokes a program, we can redirect its standard output to a file, either for
permanent storage or for input to another program at a later time. For example,

% java RandomSeq 1000 > data.txt

specifies that the standard output stream is not to be printed in the terminal win-
dow, but instead is to be written to a text file named data.txt. Each call to Sys-
tem.out.print() or System.out.println() appends text at the end of that file.
In this example, the end result is a file that contains 1,000 random values. No out-
put appears in the terminal window: it goes directly into the file named after the >
symbol. Thus, we can save away information for later retrieval. Note that we do not

have to change RandomSeq (PROGRAM 1.5.1) in any way
for this mechanism to work—it is using the standard
output abstraction and is unaffected by our use of a
different implementation of that abstraction. You can
use this mechanism to save output from any program
that you write. Once we have expended a significant
amount of effort to obtain a result, we often want to
save the result for later reference. In a modern system,

you can save some information by using cut-and-paste or some similar mecha-
nism that is provided by the operating system, but cut-and-paste is inconvenient
for large amounts of data. By contrast, redirection is specifically designed to make
it easy to handle large amounts of data.

Redirecting from a file to standard input. Similarly, we can redirect standard
input so that StdIn reads data from a file instead of the terminal application:

% java Average < data.txt

This command reads a sequence of numbers from the file data.txt and computes
their average value. Specifically, the < symbol is a directive that tells the operating
system to implement the standard input stream
by reading from the text file data.txt instead of
waiting for the user to type something into the
terminal window. When the program calls St-
dIn.readDouble(), the operating system reads
the value from the file. The file data.txt could

Redirecting standard output to a file

standard output

RandomSeq

java RandomSeq 1000 > data.txt

data.txt

Redirecting from a file to standard input

standard input

Average

java Average < data.txt
data.txt

!"#$%&'(')!"*+,,,:.0 ./01/23,,,0425,67

1331.5 Input and Output

have been created by any application, not just a Java program—virtually every ap-
plication on your computer can create text files. This facility to redirect from a file
to standard input enables us to create data-driven code where we can change the
data processed by a program without having to change the program at all. Instead,
we keep data in files and write programs that read from standard input.

Connecting two programs. The most flexible way to implement the standard in-
put and standard output abstractions is to specify that they are implemented by
our own programs! This mechanism is called piping. For example, the command

% java RandomSeq 1000 | java Average

specifies that the standard output for RandomSeq and the standard input stream for
Average are the same stream. The effect is as if RandomSeq were typing the num-
bers it generates into the terminal window while Average is running. This example
also has the same effect as the following sequence of commands:

% java RandomSeq 1000 > data.txt
% java Average < data.txt

In this case, the file data.txt is not created. This difference is profound, because
it removes another limitation on the size of the input and output streams that we
can process. For example, we could replace 1000 in our example with 1000000000,
even though we might not have the
space to save a billion numbers on our
computer (we do need the time to pro-
cess them, however). When RandomSeq
calls System.out.println(), a string
is added to the end of the stream; when
Average calls StdIn.readInt(), a
string is removed from the beginning
of the stream. The timing of precisely
what happens is up to the operating
system: it might run RandomSeq until it produces some output, and then run Av-
erage to consume that output, or it might run Average until it needs some output,
and then run RandomSeq until it produces the needed output. The end result is the
same, but our programs are freed from worrying about such details because they
work solely with the standard input and standard output abstractions.

Piping the output of one program to the input of another

standard inputstandard output

RandomSeq

java RandomSeq 1000 | java Average

Average

!"#$%&'(')!"*+,,,:.. ./01/23,,,0425,67

134 Elements of Programming

Filters. Piping, a core feature of the original UNIX system of the early 1970s, still
survives in modern systems because it is a simple abstraction for communicating
among disparate programs. Testimony to the power of this abstraction is that many
UNIX programs are still being used today to process files that are thousands or mil-
lions of times larger than imagined by the programs’ authors. We can communicate
with other Java programs via calls on methods, but standard input and standard
output allow us to communicate with programs that were written at another time
and, perhaps, in another language. With standard input and standard output, we
are agreeing on a simple interface to the outside world. For many common tasks,
it is convenient to think of each program as a filter that converts a standard input
stream to a standard output stream in some way, with piping as the command

% java RangeFilter 100 400
358 1330 55 165 689 1014 3066 387 575 843 203 48 292 877 65 998
<ctrl-d>
358 165 387 203 292

Program 1.5.4 A simple filter

public class RangeFilter
{
 public static void main(String[] args)
 { // Filter out numbers not between lo and hi.
 int lo = Integer.parseInt(args[0]);
 int hi = Integer.parseInt(args[1]);
 while (!StdIn.isEmpty())
 { // Process one number.
 int t = StdIn.readInt();
 if (t >= lo && t <= hi) StdOut.print(t + " ");
 }
 StdOut.println();
 }
}

This filter copies to the output stream the numbers from the input stream that fall inside the
range given by the command-line parameters. There is no limit on the length of the streams.

lo lower bound of range
hi upper bound of range

t current number

!"#$%&'(')!"*+,,,:.- ./01/23,,,0425,67

1351.5 Input and Output

mechanism to connect programs together. For example, RangeFilter (PROGRAM
1.5.4) takes two command-line arguments and prints on standard output those
numbers from standard input that fall within the specified range. You might imag-
ine standard input to be measurement data from some instrument, with the filter
being used to throw away data outside the range of interest for the experiment at
hand. Several standard filters that were designed for UNIX still survive (sometimes
with different names) as commands in modern operating systems. For example,
the sort filter puts the lines on standard input in sorted order:

% java RandomSeq 6 | sort
0.035813305516568916
0.14306638757584322
0.348292877655532103
0.5761644592016527
0.7234592733392126
0.9795908813988247

We discuss sorting in SECTION 4.2. A second useful filter is grep, which prints the
lines from standard input that match a given pattern. For example, if you type

% grep lo < RangeFilter.java

you get the result

 // Filter out numbers not between lo and hi.
 int lo = Integer.parseInt(args[0]);
 if (t >= lo && t <= hi) StdOut.print(t + " ");

Programmers often use tools such as grep to get a quick reminder of variable
names or language usage details. A third useful filter is more, which reads data from
standard input and displays it in your terminal window one screenful at a time. For
example, if you type

% java RandomSeq 1000 | more

you will see as many numbers as fit in your terminal window, but more will wait
for you to hit the space bar before displaying each succeeding screenful. The term
filter is perhaps misleading: it was meant to describe programs like RangeFilter
that write some subsequence of standard input to standard output, but it is now
often used to describe any program that reads from standard input and writes to
standard output.

!"#$%&'(')!"*+,,,:.5 ./01/23,,,0425,67

136 Elements of Programming

Multiple streams. For many common tasks, we want to write programs that take
input from multiple sources and/or produce output intended for multiple destina-
tions. In SECTION 3.1 we discuss our Out and In libraries, which generalize StdOut
and StdIn to allow for multiple input and output streams. These libraries include
provisions not just for redirecting these streams to and from files, but also from
arbitrary web pages.

PROCESSING LARGE AMOUNTS OF INFORMATION PLAYS an essential role in many applica-
tions of computing. A scientist may need to analyze data collected from a series of
experiments, a stock trader may wish to analyze information about recent financial
transactions, or a student may wish to maintain collections of music and mov-
ies. In these and countless other applications, data-driven programs are the norm.
Standard output, standard input, redirection, and piping provides us with the ca-
pability to address such applications with our Java programs. We can collect data
into files on our computer through the web or any of the standard devices and use
redirection and piping to connect data to our programs. Many (if not most) of the
programming examples that we consider throughout this book have this ability.

Standard drawing Up to this point, our input/output abstractions have fo-
cused exclusively on text strings. Now we introduce an abstraction for producing
drawings as output. This library is easy to use and allows us to take advantage of a
visual medium to cope with far more information than is possible with just text.

As with standard input, our standard drawing abstraction is implemented in
a library that you need to download from the booksite, StdDraw.java. Standard
drawing is very simple: we imagine an abstract drawing device capable of drawing
lines and points on a two-dimensional canvas. The device is capable of responding
to the commands that our programs issue in the form of calls to methods in Std-
Draw such as the following:

public class StdDraw (basic drawing commands)

void line(double x0, double y0, double x1, double y1)

void point(double x, double y)

Like the methods for standard input and standard output, these methods are nearly
self-documenting: StdDraw.line() draws a straight line segment connecting the

!"#$%&'(')!"*+,,,:.8 ./01/23,,,0425,67

1371.5 Input and Output

Your first drawing

public class Triangle
{
 public static void main(String[] args)
 {
 double t = Math.sqrt(3.0)/2.0;
 StdDraw.line(0.0, 0.0, 1.0, 0.0);
 StdDraw.line(1.0, 0.0, 0.5, t);
 StdDraw.line(0.5, t, 0.0, 0.0);
 StdDraw.point(0.5, t/3.0);
 }
}

(x1, y1)

(x0, y0)

(0, 0)

(1, 1)

StdDraw.line(x0, y0, x1, y1);

point (x0 , y0) with the point (x1 , y1) whose coor-
dinates are given as arguments. StdDraw.point()
draws a spot centered on the point (x, y) whose co-
ordinates are given as arguments. The default scale
is the unit square (all coordinates between 0 and
1). The standard implementation displays the can-
vas in a window on your computer’s screen, with
black lines and points on a white background.
The window includes a menu option to save your
drawing to a file, in a format suitable for publish-
ing on paper or on the web.

Your first drawing. The HelloWorld equivalent for graphics programming with
StdDraw is to draw a triangle with a point inside. To form the triangle, we draw
three lines: one from the point (0, 0) at the lower left corner to the point (1, 0),
one from that point to the third point at (1/2,
#3/2), and one from that point back to (0, 0).
As a final flourish, we draw a spot in the mid-
dle of the triangle. Once you have success-
fully downloaded StdDraw.java and then
compiled and run Triangle, you are off and
running to write your own programs that
draw figures comprised of lines and points.
This ability literally adds a new dimension to
the output that you can produce.

When you use a computer to create
drawings, you get immediate feedback (the
drawing) so that you can refine and improve
your program quickly. With a computer pro-
gram, you can create drawings that you could
not contemplate making by hand. In particu-
lar, instead of viewing our data as just num-
bers, we can use pictures, which are far more
expressive. We will consider other graphics
examples after we discuss a few other draw-
ing commands.

!"#$%&'(')!"*+,,,:.1 ./01/23,,,0425,67

138 Elements of Programming

Scaling to integer coordinates

int N = 50;
StdDraw.setXscale(0, N);
StdDraw.setYscale(0, N);
for (int i = 0; i <= N; i++)
 StdDraw.line(0, N-i, i, 0);

(N, N)

(0, 0)

Control commands. The default coordinate system for standard drawing is the
unit square, but we often want to draw plots at different scales. For example, a
typical situation is to use coordinates in some range for the x-coordinate, or the
y-coordinate, or both. Also, we often want to draw lines of different thickness and
points of different size from the standard. To accommodate these needs, StdDraw
has the following methods:

public class StdDraw (basic control commands)

void setXscale(double x0, double x1) reset x range to (x0 , x1)

void setYscale(double y0, double y1) reset y range to (y0 , y1)

void setPenRadius(double r) set pen radius to r

Note: Methods with the same names but no arguments reset to default values.

For example, when we issue the command StdDraw.setXscale(0, N), we are tell-
ing the drawing device that we will be using x-coordinates between 0 and N. Note
that the two-call sequence

StdDraw.setXscale(x0, x1);
StdDraw.setYscale(y0, y1);

sets the drawing coordinates to be within a bound-
ing box whose lower left corner is at (x0, y0) and
whose upper right corner is at (x1, y1). If you use
integer coordinates, Java casts them to double, as
expected. Scaling is the simplest of the transforma-
tions commonly used in graphics. In the applica-
tions that we consider in this chapter, we use it in a
straightforward way to match our drawings to our
data.

The pen is circular, so that lines have rounded
ends, and when you set the pen radius to r and draw
a point, you get a circle of radius r. The default pen
radius is .002 and is not affected by coordinate scal-
ing. This default is about 1/500 the width of the de-
fault window, so that if you draw 200 points equally
spaced along a horizontal or vertical line, you will

!"#$%&'(')!"*+,,,:.9 ./01/23,,,0425,67

1391.5 Input and Output

Program 1.5.5 Input-to-drawing filter

public class PlotFilter
{
 public static void main(String[] args)
 { // Plot points in standard input.

 // Scale as per first four values.
 double x0 = StdIn.readDouble();
 double y0 = StdIn.readDouble();
 double x1 = StdIn.readDouble();
 double y1 = StdIn.readDouble();
 StdDraw.setXscale(x0, x1);
 StdDraw.setYscale(y0, y1);

 // Read and plot the rest of the points.
 while (!StdIn.isEmpty())
 { // Read and plot a point.
 double x = StdIn.readDouble();
 double y = StdIn.readDouble();
 StdDraw.point(x, y);
 }
 }
}

Some data is inherently visual. The file USA.txt on the booksite has the coordinates of the US
cities with populations over 500 (by convention, the first four numbers are the minimum and
maximum x and y values).

x0 left bound
y0 bottom bound

x1 right bound

y1 top bound

x, y current point

% java PlotFilter < USA.txt

!"#$%&'(')!"*+,,,:.3 ./01/23,,,0425,67

140 Elements of Programming

be able to see individual circles, but if you draw 250 such points, the result will look
like a line. When you issue the command StdDraw.setPenRadius(.01), you are
saying that you want the thickness of the lines and the size of the points to be five
times the .002 standard.

Filtering data to a standard drawing. One of the simplest applications of stan-
dard draw is to plot data, by filtering it from standard input to the drawing. Plot-
Filter (PROGRAM 1.5.5) is such a filter: it reads a sequence of points defined by (x,
y) coordinates and draws a spot at each point. It adopts the convention that the
first four numbers on standard input specify the bounding box, so that it can scale
the plot without having to make an extra pass through all the points to determine
the scale (this kind of convention is typical with such data files). The graphical
representation of points plotted in this way is far more expressive (and far more
compact) than the numbers themselves or anything that we could create with the
standard output representation that our programs have been limited to until now.
The plotted image that is produced by PROGRAM 1.5.5 makes it far easier for us to
infer properties of the cities (such as, for example, clustering of population centers)
than does a list of the coordinates. Whenever we are processing data that represents
the physical world, a visual image is likely to be one of the most meaningful ways
that we can use to display output. PlotFilter illustrates just how easily you can
create such an image.

Plotting a function graph. Another important use of StdDraw is to plot experi-
mental data or the values of a mathematical function. For example, suppose that
we want to plot values of the function y = sin(4x) " sin(20x) in the interval [0, #].
Accomplishing this task is a prototypical example of sampling: there are an infinite
number of points in the interval, so we have to make do with evaluating the function
at a finite number of points within the interval. We sample the function by choos-
ing a set of x-values, then computing y-values by evaluating the function at each
x-value. Plotting the function by connecting successive points with lines produces
what is known as a piecewise linear approximation. The simplest way to proceed is
to regularly space the x values: we decide ahead of time on a sample size, then space
the x-coordinates by the interval size divided by the sample size. To make sure that
the values we plot fall in the visible canvas, we scale the x-axis corresponding to the
interval and the y-axis corresponding to the maximum and minimum values of the
function within the interval. The smoothness of the curve depends on properties

!"#$%&'(')!"*+,,,:-2 ./01/23,,,0425,67

1411.5 Input and Output

of the function and the size of the sample.
If the sample size is too small, the rendition
of the function may not be at all accurate
(it might not be very smooth, and it might
miss major fluctuations); if the sample is
too large, producing the plot may be time-
consuming, since some functions are time-
consuming to compute. (In SECTION 2.4, we
will look at a method for plotting a smooth
curve without using an excessive number of
points.) You can use this same technique to
plot the function graph of any function you
choose: decide on an x-interval where you
want to plot the function, compute function
values evenly spaced through that interval
and store them in an array, determine and
set the y-scale, and draw the line segments.

Outline and filled shapes. StdDraw also includes methods to draw circles, rect-
angles, and arbitrary polygons. Each shape defines an outline. When the method
name is just the shape name, that outline is traced by the drawing pen. When the
name begins with filled, the named shape is instead filled solid, not traced. As
usual, we summarize the available methods in an API:

public class StdDraw (shapes)

void circle(double x, double y, double r)

void filledCircle(double x, double y, double r)

void square(double x, double y, double r)

void filledSquare(double x, double y, double r)

void polygon(double[] x, double[] y)

void filledPolygon(double[] x, double[] y)

The arguments for circle() and filledCircle() define a circle of radius r cen-
tered at (x, y); the arguments for square() and filledSquare() define a square

Plotting a function graph

double[] x = new double[N+1];
double[] y = new double[N+1];
for (int i = 0; i <= N; i++)
 x[i] = Math.PI * i / N;
for (int i = 0; i <= N; i++)
 y[i] = Math.sin(4*x[i]) + Math.sin(20*x[i]);
StdDraw.setXscale(0, Math.PI);
StdDraw.setYscale(-2.0, 2.0);
for (int i = 1; i <= N; i++)
 StdDraw.line(x[i-1], y[i-1], x[i], y[i]);

N = 200N = 20

!"#$%&'(')!"*+,,,:-: ./01/23,,,0425,67

142 Elements of Programming

StdDraw.square(x, y, r);

(x1, y1)

(x0, y0)

double[] x = {x0, x1, x2, x3};
double[] y = {y0, y1, y2, y3};
StdDraw.polygon(x, y);

(x2, y2)(x3, y3)

(x, y)

StdDraw.circle(x, y, r);

r

(x, y)

r

r

of side length 2r centered on (x, y); and the arguments for polygon() and filled-
Polygon() define a sequence of points that we connect by lines, including one

from the last point to the first point. If you want to define
shapes other than squares or circles, use one of these meth-
ods. For example,

 double[] xd = { x-r, x, x+r, x };
 double[] yd = { y, y+r, y, y-r };
 StdDraw.polygon(xd, yd);

plots a diamond (a rotated 2r-by-2r square) centered on
the point (x, y).

Text and color. Occasionally, you may wish to annotate or
highlight various elements in your drawings. StdDraw has
a method for drawing text, another for setting parameters
associated with text, and another for changing the color
of the ink in the pen. We make scant use of these features
in this book, but they can be very useful, particularly for
drawings on your computer screen. You will find many ex-
amples of their use on the booksite.

public class StdDraw (text and color commands)

void text(double x, double y, String s)

void setFont(Font f)

void setPenColor(Color c)

In this code, Font and Color are non-primitive types that
you will learn about in SECTION 3.1. Until then, we leave
the details to StdDraw. The available pen colors are BLACK,
BLUE, CYAN, DARK_GRAY, GRAY, GREEN, LIGHT_GRAY, MA-
GENTA, ORANGE, PINK, RED, WHITE, and YELLOW, defined as
constants within StdDraw. For example, the call StdDraw.
setPenColor(StdDraw.GRAY) changes to gray ink. The

default ink color is BLACK. The default font in StdDraw suffices for most of the
drawings that you need (and you can find information on using other fonts on

!"#$%&'(')!"*+,,,:-0 ./01/23,,,0425,67

1431.5 Input and Output

Shape and text examples

StdDraw.square(.2, .8, .1);
StdDraw.filledSquare(.8, .8, .2);
StdDraw.circle(.8, .2, .2);
double[] xd = { .1, .2, .3, .2 };
double[] yd = { .2, .3, .2, .1 };
StdDraw.filledPolygon(xd, yd);
StdDraw.text(.2, .5, "black text");
StdDraw.setPenColor(StdDraw.WHITE);
StdDraw.text(.8, .8, "white text");

!"#$%&'()'

*+,'(&'()'

the booksite). For example, you might wish to use
these methods to annotate function plots to high-
light relevant values, and you might find it useful to
develop similar methods to annotate other parts of
your drawings.

Shapes, color, and text are basic tools that you
can use to produce a dizzying variety of images,
but you should use them sparingly. Use of such ar-
tifacts usually presents a design challenge, and our
StdDraw commands are crude by the standards of
modern graphics libraries, so that you are likely to
need an extensive number of calls to them to pro-
duce the beautiful images that you may imagine. On
the other hand, using color or labels to help focus on
important information in drawings is often worth-
while, as is using color to represent data values.

Animation. The StdDraw library supplies addi-
tional methods that provide limitless opportunities
for creating interesting effects.

public class StdDraw (advanced control commands)

void setCanvasSize(int w, int h) create canvas in screen window of
width from w and height h (in pixels)

void clear() clear the canvas to white (default)

void clear(Color c) clear the canvas; color it c

void show(int dt) draw, then pause dt milliseconds

void show() draw, turn off pause mode

The default canvas size is 512-by-512 pixels; if you want to change it, call set-
CanvasSize() before any drawing commands. The clear() and show() methods
support dynamic changes in the images on the computer screen. Such effects can
provide compelling visualizations. We give an example next that also works for the
printed page. There are more examples in the booksite that are likely to capture
your imagination.

!"#$%&'(')!"*+,,,:-. ./01/23,,,0425,67

144 Elements of Programming

Bouncing ball. The HelloWorld of animation is to produce a black ball that ap-
pears to move around on the canvas. Suppose that the ball is at position (rx , ry) and
we want to create the impression of moving it to a new position nearby, such as, for
example, (rx " .01, ry " .02). We do so in two steps:

Erase the drawing.
Draw a black ball at the new position.

To create the illusion of movement, we iterate these steps for a whole sequence of
positions (one that will form a straight line, in this case). But these two steps do
not suffice, because the computer is so quick at drawing that the image of the ball
will rapidly flicker between black and white instead of creating an animated im-
age. Accordingly, StdDraw has a show() method that allows us to control when the
results of drawing actions are actually shown on the display. You can think of it as
collecting all of the lines, points, shapes, and text that we tell it to draw, and then
immediately drawing them all when we issue the show() command. To control the
apparent speed, show() takes an argument dt that tells StdDraw to wait dt mil-
liseconds after doing the drawing. By default, StdDraw issues a show() after each
line(), point(), or other drawing command; we turn that option off when we
call StdDraw.show(t) and turn it back on when we call StdDraw.show() with no
arguments. With these commands, we can create the illusion of motion with the
following steps:

Erase the drawing (but do not show the result).
Draw a black ball at the new position.
Show the result of both commands, and wait for a brief time.

BouncingBall (PROGRAM 1.5.6) implements these steps to create the illusion of a
ball moving in the 2-by-2 box centered on the origin. The current position of the
ball is (rx , ry), and we compute the new position at each step by adding vx to rx and vy
to ry. Since (vx , vy) is the fixed distance that the ball moves in each time unit, it rep-
resents the velocity. To keep the ball in the drawing, we simulate the effect of the ball
bouncing off the walls according to the laws of elastic collision. This effect is easy
to implement: when the ball hits a vertical wall, we just change the velocity in the
x-direction from vx to –vx , and when the ball hits a horizontal wall, we change the
velocity in the y-direction from vy to –vy . Of course, you have to download the code
from the booksite and run it on your computer to see motion. To make the image
clearer on the printed page, we modified BouncingBall to use a gray background
that also shows the track of the ball as it moves (see EXERCISE 1.5.34).

!"#$%&'(')!"*+,,,:-- ./01/23,,,0425,67

1451.5 Input and Output

Program 1.5.6 Bouncing ball

public class BouncingBall
{
 public static void main(String[] args)
 { // Simulate the movement of a bouncing ball.
 StdDraw.setXscale(-1.0, 1.0);
 StdDraw.setYscale(-1.0, 1.0);
 double rx = .480, ry = .860;
 double vx = .015, vy = .023;
 double radius = .05;
 while(true)
 { // Update ball position and draw it there.
 if (Math.abs(rx + vx) + radius > 1.0) vx = -vx;
 if (Math.abs(ry + vy) + radius > 1.0) vy = -vy;
 rx = rx + vx;
 ry = ry + vy;
 StdDraw.clear();
 StdDraw.filledCircle(rx, ry, radius);
 StdDraw.show(20);
 }
 }
}

This program simulates the movement of a bouncing ball in the box with coordinates between
-1 and +1. The ball bounces off the boundary according to the laws of elastic collision. The
20-millisecond wait for StdDraw.show() keeps the black image of the ball persistent on the
screen, even though most of the ball’s pixels alternate between black and white. If you modify
this code to take the wait time dt as a command-line argument, you can control the speed of
the ball. The images below, which show the track of the ball, are produced by a modified version
of this code (see Exercise 1.5.34).

100 steps 200 steps 500 steps

rx, ry position
vx, vy velocity

dt wait time

radius ball radius

!"#$%&'(')!"*+,,,:-5 ./01/23,,,0425,67

146 Elements of Programming

STANDARD DRAWING COMPLETES OUR PROGRAMMING MODEL by adding a “picture is worth
a thousand words” component. It is a natural abstraction that you can use to better
open up your programs to the outside world. With it, you can easily produce the
function plots and visual representations of data that are commonly used in science
and engineering. We will put it to such uses frequently throughout this book. Any
time that you spend now working with the sample programs on the last few pages
will be well worth the investment. You can find many useful examples on the book-
site and in the exercises, and you are certain to find some outlet for your creativity
by using StdDraw to meet various challenges. Can you draw an N-pointed star? Can
you make our bouncing ball actually bounce (add gravity)? You may be surprised
at how easily you can accomplish these and other tasks.

public class StdDraw

void line(double x0, double y0, double x1, double y1)
void point(double x, double y)

void text(double x, double y, String s)

void circle(double x, double y, double r)

void filledCircle(double x, double y, double r)

void square(double x, double y, double r)

void filledSquare(double x, double y, double r)

void polygon(double[] x, double[] y)

void filledPolygon(double[] x, double[] y)

void setXscale(double x0, double x1) reset x range to (x0 , x1)

void setYscale(double y0, double y1) reset y range to (y0 , y1)

void setPenRadius(double r) set pen radius to r

void setPenColor(Color c) set pen color to c

void setFont(Font f) set text font to f

void setCanvasSize(int w, int h) set canvas to w-by-h window

void clear(Color c) clear the canvas; color it c

void show(int dt) show all; pause dt milliseconds

void save(String filename) save to a .jpg or w.png file

Note: Methods with the same names but no arguments reset to default values.

API for our library of static methods for standard drawing

!"#$%&'(')!"*+,,,:-8 ./01/23,,,0425,67

1471.5 Input and Output

Standard audio As a final example of a basic abstraction for output, we consid-
er StdAudio, a library that you can use to play, manipulate, and synthesize sound
files. You probably have used your computer to process music. Now you can write
programs to do so. At the same time, you will learn some concepts behind a ven-
erable and important area of computer science and scientific computing: digital
signal processing. We will only scratch the surface of this fascinating subject, but you
may be surprised at the simplicity of the underlying concepts.

Concert A. Sound is the perception of the vibration of molecules, in particular,
the vibration of our eardrums. Therefore, oscillation is the key to understanding
sound. Perhaps the simplest place to start is to consider the musical note A above
middle C, which is known as concert A. This note is nothing more than a sine wave,
scaled to oscillate at a frequency of 440 times per second. The function sin(t) re-
peats itself once every 2# units on the x-axis, so if we measure t in seconds and plot
the function sin(2#t $440), we get a curve that oscillates 440 times per second.
When you play an A by plucking a guitar string, pushing air through a trumpet, or
causing a small cone to vibrate in a speaker, this sine wave is the prominent part
of the sound that you hear and recognize as concert A. We measure frequency in
hertz (cycles per second). When you double or halve the frequency, you move up or
down one octave on the scale. For example, 880 hertz is one octave above concert
A and 110 hertz is two octaves below concert A. For reference, the frequency range
of human hearing is about 20 to 20,000 hertz. The amplitude (y-value) of a sound
corresponds to the volume. We plot our curves between !1 and "1 and assume
that any devices that record and play sound will scale as appropriate, with further
scaling controlled by you when you turn the volume knob.

Notes, numbers, and waves

0

1 4 6 9 11
 A
 A! or B"
 B
 C
 C! or D"
 D
 D! or E"
 E
 F
 F! or G"
 G
 G! or A"
 A

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

440.00
466.16
493.88
523.25
554.37
587.33
622.25
659.26
698.46
739.99
783.99
830.61
880.00

2 3 5 7 8 10 12

note i frequency

########
440 2i/12

!"#$%&'(')!"*+,,,:-1 ./01/23,,,0425,67

148 Elements of Programming

Other notes. A simple mathematical formula characterizes the other notes on the
chromatic scale. There are twelve notes on the chromatic scale, divided equally on a
logarithmic (base 2) scale. We get the i th note above
a given note by multiplying its frequency by the
(i /12)th power of 2. In other words, the frequency
of each note in the chromatic scale is precisely the
frequency of the previous note in the scale multi-
plied by the twelfth root of two (about 1.06). This
information suffices to create music! For example,
to play the tune Frère Jacques, we just need to play
each of the notes A B C# A by producing sine waves
of the appropriate frequency for about half a second
and then repeat the pattern. The primary method in
the StdAudio library, StdAudio.play(), allows you
to do just that.

Sampling. For digital sound, we represent a curve
by sampling it at regular intervals, in precisely the
same manner as when we plot function graphs.
We sample sufficiently often that we have an ac-
curate representation of the curve—a widely used
sampling rate for digital sound is 44,100 samples
per second. For concert A, that rate corresponds to
plotting each cycle of the sine wave by sampling it
at about 100 points. Since we sample at regular in-
tervals, we only need to compute the y-coordinates
of the sample points. It is that simple: we represent
sound as an array of numbers (double values that are
between !1 and "1). Our standard sound library
method StdAudio.play() takes an array as its ar-
gument and plays the sound represented by that ar-
ray on your computer. For example, suppose that
you want to play concert A for 10 seconds. At 44,100
samples per second, you need an array of 441,001
double values. To fill in the array, use a for loop that
samples the function sin(2#t $440) at t = 0/44100,

44,100 samples/second, 1,102 samples

1/200 second, 220 samples

1/1000 second, 44 samples

1/1000 second

Sampling a sine wave

1/40 second, 1,102 samples

1/1000 second

22,050 samples/second, 551 samples

11,025 samples/second, 275 samples

5,512 samples/second, 137 samples

1/40 second (various sample rates)

44,100 samples/second (various times)

!"#$%&'(')!"*+,,,:-9 ./01/23,,,0425,67

1491.5 Input and Output

1/44100, 2/44100, 3/44100, . . . 441000/44100. Once we fill the array with these
values, we are ready for StdAudio.play(), as in the following code:

int sps = 44100; // samples per second
int hz = 440; // concert A
double duration = 10.0; // ten seconds
int N = (int) (sps * duration); // total number of samples
double[] a = new double[N+1];
for (int i = 0; i <= N; i++)
 a[i] = Math.sin(2*Math.PI * i * hz / sps);
StdAudio.play(a);

This code is the HelloWorld of digital audio. Once you use it to get your computer
to play this note, you can write code to play other notes and make music! The dif-
ference between creating sound and plotting an oscillating curve is nothing more
than the output device. Indeed, it is instructive and entertaining to send the same
numbers to both standard draw and standard audio (see EXERCISE 1.5.27).

Saving to a file. Music can take up a lot of space on your computer. At 44,100
samples per second, a four-minute song corresponds to 4$60$44100=10,584,000
numbers. Therefore, it is common to represent the numbers corresponding to a
song in a binary format that uses less space than the string-of-digits representation
that we use for standard input and output. Many such formats have been developed
in recent years—StdAudio uses the .wav format. You can find some information
about the .wav format on the booksite, but you do not need to know the details,
because StdAudio takes care of the conversions for you. Our standard library for
audio allows you to play .wav files, to write programs to create and manipulate ar-
rays of double values, and to read and write them as .wav files.

public class StdAudio

void play(String file) play the given .wav file

void play(double[] a) play the given sound wave

void play(double x) play sample for 1/44100 second

void save(String file, double[] a) save to a .wav file

double[] read(String file) read from a .wav file

API for our library of static methods for standard audio

!"#$%&'(')!"*+,,,:-3 ./01/23,,,0425,67

150 Elements of Programming

% java PlayThatTune < elise.txt% more elise.txt
7 .25
6 .25
7 .25
6 .25
7 .25
2 .25
5 .25
3 .25
0 .50

Program 1.5.7 Digital signal processing

public class PlayThatTune
{
 public static void main(String[] args)
 { // Read a tune from StdIn and play it.
 int sps = 44100;
 while (!StdIn.isEmpty())
 { // Read and play one note.
 int pitch = StdIn.readInt();
 double duration = StdIn.readDouble();
 double hz = 440 * Math.pow(2, pitch / 12.0);
 int N = (int) (sps * duration);
 double[] a = new double[N+1];
 for (int i = 0; i <= N; i++)
 a[i] = Math.sin(2*Math.PI * i * hz / sps);
 StdAudio.play(a);
 }
 }
}

This is a data-driven program that plays pure tones from the notes on the chromatic scale,
specified on standard input as a pitch (distance from concert A) and a duration (in seconds).
The test client reads the notes from standard input, creates an array by sampling a sine wave
of the specified frequency and duration at 44100 samples per second, and then plays each note
by calling StdAudio.play().

pitch distance from A
duration note play time

hz frequency

N number of samples

a[] sampled sine wave

!"#$%&'(')!"*+,,,:52 ./01/23,,,0425,67

1511.5 Input and Output

PlayThatTune (PROGRAM 1.5.7) is an example that shows how easily we can
create music with StdAudio. It takes notes from standard input, indexed on the
chromatic scale from concert A, and plays them on standard audio. You can imag-
ine all sorts of extensions on this basic scheme, some of which are addressed in the
exercises. We include StdAudio in our basic arsenal of programming tools because
sound processing is one important application of scientific computing that is cer-
tainly familiar to you. Not only has the commercial application of digital signal
processing had a phenomenal impact on modern society, but the science and en-
gineering behind it combines physics and computer science in interesting ways.
We will study more components of digital signal processing in some detail later in
the book. (For example, you will learn in SECTION 2.1 how to create sounds that are
more musical than the pure sounds produced by PlayThatTune.)

I/O IS A PARTICULARLY CONVINCING EXAMPLE of the power of abstraction because stan-
dard input, standard output, standard draw, and standard audio can be tied to dif-
ferent physical devices at different times without making any changes to programs.
Although devices may differ dramatically, we can write programs that can do I/O
without depending on the properties of specific devices. From this point forward,
we will use methods from StdOut, StdIn, StdDraw, and/or StdAudio in nearly ev-
ery program in this book, and you will use them in nearly all of your programs, so
make sure to download copies of these libraries. For economy, we collectively refer
to these libraries as Std*. One important advantage of using such libraries is that
you can switch to new devices that are faster, cheaper, or hold more data without
changing your program at all. In such a situation, the details of the connection are
a matter to be resolved between your operating system and the Std* implementa-
tions. On modern systems, new devices are typically supplied with software that
resolves such details automatically for both the operating system and for Java.

Conceptually, one of the most significant features of the standard input, stan-
dard output, standard draw, and standard audio data streams is that they are infi-
nite: from the point of view of your program, there is no limit on their length. This
point of view not only leads to programs that have a long useful life (because they
are less sensitive to changes in technology than programs with built-in limits). It
also is related to the Turing machine, an abstract device used by theoretical com-
puter scientists to help us understand fundamental limitations on the capabilities
of real computers. One of the essential properties of the model is the idea of a finite
discrete device that works with an unlimited amount of input and output.

!"#$%&'(')!"*+,,,:5: ./01/23,,,0425,67

152 Elements of Programming

Q&A

Q. Why are we not using the standard Java libraries for input, graphics, and sound?

A. We are using them, but we prefer to work with simpler abstract models. The
Java libraries behind StdIn, StdDraw, and StdAudio are built for production pro-
gramming, and the libraries and their APIs are a bit unwieldy. To get an idea of
what they are like, look at the code in StdIn.java, StdDraw.java, and StdAudio.
java.

Q. So, let me get this straight. If I use the format %2.4f for a double value, I get two
digits before the decimal point and four digits after, right?

A. No, that specifies just four digits after the decimal point. The first value is the
width of the whole field. You want to use the format %7.2f to specify seven charac-
ters in total, four before the decimal point, the decimal point itself, and two digits
after the decimal point.

Q. What other conversion codes are there for printf()?

A. For integer values, there is o for octal and x for hexadecimal. There are also nu-
merous formats for dates and times. See the booksite for more information.

Q. Can my program re-read data from standard input?

A. No. You only get one shot at it, in the same way that you cannot undo a print-
ln() command.

Q. What happens if my program attempts to read data from standard input after it
is exhausted?

A. You will get an error. StdIn.isEmpty() allows you to avoid such an error by
checking whether there is more input available.

Q. What does the error message Exception in thread "main" java.lang.
NoClassDefFoundError: StdIn mean?

A. You probably forgot to put StdIn.java in your working directory.

Q. I have a different working directory for each project that I am working on, so I

!"#$%&'(')!"*+,,,:50 ./01/23,,,0425,67

1531.5 Input and Output

have copies of StdOut.java, StdIn.java, StdDraw.java, and StdAudio.java in
each of them. Is there some better way?

A. Yes. You can put them all in one directory and use the “classpath” mechanism to
tell Java where to find them. This mechanism is operating-system dependent—you
can find instructions on how to use it on the booksite.

Q. My terminal window hangs at the end of a program using StdAudio. How can
I avoid having to use <ctrl-c> to get a command prompt?

A. Add a call to System.exit(0) as the last line in main(). Don’t ask why.

Q. So I use negative integers to go below concert A when making input files for
PlayThatTune?

A. Right. Actually, our choice to put concert A at 0 is arbitrary. A popular standard,
known as the MIDI Tuning Standard, starts numbering at the C five octaves below
concert A. By that convention, concert A is 69 and you do not need to use negative
numbers.

Q. Why do I hear weird results on standard audio when I try to sonify a sine wave
with a frequency of 30,000 Hertz (or more)?

A. The Nyquist frequency, defined as one-half the sampling frequency, represents
the highest frequency that can be reproduced. For standard audio, the sampling
frequency is 44,100, so the Nyquist frequency is 22,050.

!"#$%&'(')!"*+,,,:5. ./01/23,,,0425,67

154 Elements of Programming

Exercises

1.5.1 Write a program that reads in integers (as many as the user enters) from
standard input and prints out the maximum and minimum values.

1.5.2 Modify your program from the previous exercise to insist that the integers
must be positive (by prompting the user to enter positive integers whenever the
value entered is not positive).

1.5.3 Write a program that takes an integer N from the command line, reads
N double values from standard input, and prints their mean (average value) and
standard deviation (square root of the sum of the squares of their differences from
the average, divided by N−1).

1.5.4 Extend your program from the previous exercise to create a filter that prints
all the values that are further than 1.5 standard deviations from the mean. Use an
array.

1.5.5 Write a program that reads in a sequence of integers and prints out both
the integer that appears in a longest consecutive run and the length of the run. For
example, if the input is 1 2 2 1 5 1 1 7 7 7 7 1 1, then your program should
print Longest run: 4 consecutive 7s.

1.5.6 Write a filter that reads in a sequence of integers and prints out the integers,
removing repeated values that appear consecutively. For example, if the input i
1 2 2 1 5 1 1 7 7 7 7 1 1 1 1 1 1 1 1 1, your program should print out
1 2 1 5 1 7 1.

1.5.7 Write a program that takes a command-line argument N, reads in N-1 dis-
tinct integers between 1 and N, and determines the missing value.

1.5.8 Write a program that reads in positive real numbers from standard input
and prints out their geometric and harmonic means. The geometric mean of N posi-
tive numbers x1, x2, ..., xN is (x1 $ x2 $... $ xN)1/N. The harmonic mean is (1/x1 + 1/
x2 + ... + 1/xN) / (1/N). Hint : For the geometric mean, consider taking logs to avoid
overflow.

1.5.9 Suppose that the file input.txt contains the two strings F and F. What

!"#$%&'(')!"*+,,,:5- ./01/23,,,0425,67

1551.5 Input and Output

does the following command do (see EXERCISE 1.2.35)?

java Dragon < input.txt | java Dragon | java Dragon

public class Dragon
{
 public static void main(String[] args)
 {
 String dragon = StdIn.readString();
 String nogard = StdIn.readString();
 StdOut.print(dragon + "L" + nogard);
 StdOut.print(" ");
 StdOut.print(dragon + "R" + nogard);
 StdOut.println();
 }
}

1.5.10 Write a filter TenPerLine that takes a sequence of integers between 0 and
99 and prints 10 integers per line, with columns aligned. Then write a program
RandomIntSeq that takes two command-line arguments M and N and outputs N
random integers between 0 and M-1. Test your programs with the command java
RandomIntSeq 200 100 | java TenPerLine.

1.5.11 Write a program that reads in text from standard input and prints out the
number of words in the text. For the purpose of this exercise, a word is a sequence
of non-whitespace characters that is surrounded by whitespace.

1.5.12 Write a program that reads in lines from standard input with each line
containing a name and two integers and then uses printf() to print a table with a
column of the names, the integers, and the result of dividing the first by the second,
accurate to three decimal places. You could use a program like this to tabulate bat-
ting averages for baseball players or grades for students.

1.5.13 Which of the following require saving all the values from standard input (in
an array, say), and which could be implemented as a filter using only a fixed number
of variables? For each, the input comes from standard input and consists of N real
numbers between 0 and 1.

!"#$%&'(')!"*+,,,:55 ./01/23,,,0425,67

156 Elements of Programming

Print the maximum and minimum numbers.
Print the k th smallest value.
Print the sum of the squares of the numbers.
Print the average of the N numbers.
Print the percentage of numbers greater than the average.
Print the N numbers in increasing order.
Print the N numbers in random order.

1.5.14 Write a program that prints a table of the monthly payments, remaining
principal, and interest paid for a loan, taking three numbers as command-line argu-
ments: the number of years, the principal, and the interest rate (see EXERCISE 1.2.24).

1.5.15 Write a program that takes three command-line arguments x, y, and z,
reads from standard input a sequence of point coordinates (xi, yi, zi), and prints the
coordinates of the point closest to (x, y, z). Recall that the square of the distance
between (x , y , z) and (xi , yi , zi) is (x ! xi)2 + (y ! yi)2 + (z ! zi)2. For efficiency, do
not use Math.sqrt() or Math.pow().

1.5.16 Given the positions and masses of a sequence of objects, write a program
to compute their center-of-mass, or centroid. The centroid is the average position
of the N objects, weighted by mass. If the positions and masses are given by (xi , yi,
mi), then the centroid (x, y, m) is given by:

m = m1 + m2 + ... + mN

x = (m1 x1 + ... + mn xN) / m
y = (m1 y1 + ... + mn yN) / m

1.5.17 Write a program that reads in a sequence of real numbers between !1 and
"1 and prints out their average magnitude, average power, and the number of zero
crossings. The average magnitude is the average of the absolute values of the data
values. The average power is the average of the squares of the data values. The num-
ber of zero crossings is the number of times a data value transitions from a strictly
negative number to a strictly positive number, or vice versa. These three statistics
are widely used to analyze digital signals.

!"#$%&'(')!"*+,,,:58 ./01/23,,,0425,67

1571.5 Input and Output

1.5.18 Write a program that takes a command-line argument N and plots an N-by-
N checkerboard with red and black squares. Color the lower left square red.

1.5.19 Write a program that takes as command-line arguments an integer N and
a double value p (between 0 and 1), plots N equally spaced points of size on the cir-
cumference of a circle, and then, with probability p for each pair of points, draws a
gray line connecting them.

16 .125 16 .25 16 .5 16 1.0

1.5.20 Write code to draw hearts, spades, clubs, and diamonds. To draw a heart,
draw a diamond, then attach two semicircles to the upper left and upper right sides.

1.5.21 Write a program that takes a command-line argument N and plots a rose
with N petals (if N is odd) or 2N petals (if N is even), by plotting the polar coordi-
nates (r, &) of the function r = sin(N &) for & ranging from 0 to 2# radians.

4 5 8 9

1.5.22 Write a program that takes a string s from the command line and displays
it in banner style on the screen, moving from left to right and wrapping back to the
beginning of the string as the end is reached. Add a second command-line argu-
ment to control the speed.

!"#$%&'(')!"*+,,,:51 ./01/23,,,0425,67

158 Elements of Programming

1.5.23 Modify PlayThatTune to take additional command-line arguments that
control the volume (multiply each sample value by the volume) and the tempo
(multiply each note’s duration by the tempo).

1.5.24 Write a program that takes the name of a .wav file and a playback rate r as
command-line arguments and plays the file at the given rate. First, use StdAudio.
read() to read the file into an array a[]. If r = 1, just play a[]; otherwise create
a new array b[] of approximate size r times a.length. If r < 1, populate b[] by
sampling from the original; if r > 1, populate b[] by interpolating from the original.
Then play b[].

1.5.25 Write programs that uses StdDraw to create each of the following designs.

1.5.26 Write a program Circles that draws filled circles of random size at ran-
dom positions in the unit square, producing images like those below. Your program
should take four command-line arguments: the number of circles, the probability
that each circle is black, the minimum radius, and the maximum radius.

200 1 .01 .01 100 1 .01 .05 500 .5 .01 .05 50 .75 .1 .2

!"#$%&'(')!"*+,,,:59 ./01/23,,,0425,67

1591.5 Input and Output

Creative Exercises

1.5.27 Visualizing audio. Modify PlayThatTune to send the values played to stan-
dard drawing, so that you can watch the sound waves as they are played. You will
have to experiment with plotting multiple curves in the drawing canvas to synchro-
nize the sound and the picture.

1.5.28 Statistical polling. When collecting statistical data for certain political polls,
it is very important to obtain an unbiased sample of registered voters. Assume that
you have a file with N registered voters, one per line. Write a filter that prints out a
random sample of size M (see PROGRAM 1.4.1).

1.5.29 Terrain analysis. Suppose that a terrain is represented by a two-dimension-
al grid of elevation values (in meters). A peak is a grid point whose four neighboring
cells (left, right, up, and down) have strictly lower elevation values. Write a program
Peaks that reads a terrain from standard input and then computes and prints the
number of peaks in the terrain.

1.5.30 Histogram. Suppose that the standard input stream is a sequence of dou-
ble values. Write a program that takes an integer N and two double values l and r
from the command line and uses StdDraw to plot a histogram of the count of the
numbers in the standard input stream that fall in each of the N intervals defined by
dividing (l , r) into N equal-sized intervals.

1.5.31 Spirographs. Write a program that takes three parameters R, r, and a from
the command line and draws the resulting spirograph. A spirograph (technically,
an epicycloid) is a curve formed by rolling a circle of radius r around a larger fixed
circle of radius R. If the pen offset from the center of the rolling circle is (r"a), then
the equation of the resulting curve at time t is given by

x(t) = (R + r) cos (t) ! (r + a) cos ((R + r)t /r)
y(t) = (R + r) sin (t) ! (r + a) sin ((R + r)t /r)

Such curves were popularized by a best-selling toy that contains discs with gear
teeth on the edges and small holes that you could put a pen in to trace spirographs.

!"#$%&'(')!"*+,,,:53 ./01/23,,,0425,67

160 Elements of Programming

1.5.32 Clock. Write a program that displays an animation of the second, minute,
and hour hands of an analog clock. Use the method StdDraw.show(1000) to up-
date the display roughly once per second.

1.5.33 Oscilloscope. Write a program to simulate the output of an oscilloscope
and produce Lissajous patterns. These patterns are named after the French physi-
cist, Jules A. Lissajous, who studied the patterns that arise when two mutually per-
pendicular periodic disturbances occur simultaneously. Assume that the inputs are
sinusoidal, so that the following parametric equations describe the curve:

x(t) = Ax sin (wx t + &x)
y(t) = A y sin (wy t + &y)

Take the six parameters Ax , wx , &x , Ay , wy , and &y from the command line.

1.5.34 Bouncing ball with tracks. Modify BouncingBall to produce images like
the ones shown in the text, which show the track of the ball on a gray background.

1.5.35 Bouncing ball with gravity. Modify BouncingBall to incorporate gravity
in the vertical direction. Add calls to StdAudio.play() to add one sound effect
when the ball hits a wall and a different one when it hits the floor.

1.5.36 Random tunes. Write a program that uses StdAudio to play random tunes.
Experiment with keeping in key, assigning high probabilities to whole steps, repeti-
tion, and other rules to produce reasonable melodies.

1.5.37 Tile patterns. Using your solution to EXERCISE 1.5.25, write a program
TilePattern that takes a command-line argument N and draws an N-by-N pattern,
using the tile of your choice. Add a second command-line argument that adds a
checkerboard option. Add a third command-line argument for color selection. Us-
ing the patterns on the facing page as a starting point, design a tile floor. Be creative!
Note: These are all designs from antiquity that you can find in many ancient (and
modern) buildings.

!"#$%&'(')!"*+,,,:82 ./01/23,,,0425,67

1611.5 Input and Output

!"#$%&'(')!"*+,,,:8: ./01/23,,,0425,67

Elements of Programming

1.6 Case Study: Random Web Surfer

COMMUNICATING ACROSS THE WEB HAS BECOME an integral part of everyday life. This
communication is enabled in part by scientific studies of the structure of the web,
a subject of active research since its inception. We next consider a simple model of
the web that has proven to be a particularly successful approach to understand-
ing some of its properties. Variants of
this model are widely used and have been
a key factor in the explosive growth of
search applications on the web.

The model is known as the random
surfer model, and is simple to describe.
We consider the web to be a fixed set of
pages, with each page containing a fixed set of hyperlinks (for brevity, we use the
term links), and each link a reference to some other page. We study what happens
to a person (the random surfer) who randomly moves from page to page, either by
typing a page name into the address bar or by clicking a link on the current page.

The underlying mathematical model behind the web model is known as the
graph, which we will consider in detail at the end of the book (in SECTION 4.5).

We defer discussion of details about processing
graphs until then. Instead, we concentrate on
calculations associated with a natural and well-
studied probabilistic model that accurately de-
scribes the behavior of the random surfer.

The first step in studying the random
surfer model is to formulate it more precise-
ly. The crux of the matter is to specify what it
means to randomly move from page to page.
The following intuitive 90-10 rule captures
both methods of moving to a new page: As-
sume that 90 per cent of the time the random
surfer clicks a random link on the current page
(each link chosen with equal probability) and
that 10 percent of the time the random surfer
goes directly to a random page (all pages on the
web chosen with equal probability).Pages and links

ttt.gov

aaa.edu

mmm.net

mmm.net

fff.org

aaa.edu

www.com
www.com
fff.org

fff.org

ttt.gov

mmm.net

mmm.net

fff.org

aaa.edu

page

links

1.6.1 Computing the transition matrix . 165
1.6.2 Simulating a random surfer 167
1.6.3 Mixing a Markov chain 174

 Programs in this section

!"#$%&'(')!"*+,,,:80 ./01/23,,,0425,67

1631.6 Case Study: Random Web Surfer

You can immediately see that this model has flaws, because you know from
your own experience that the behavior of a real web surfer is not quite so simple:

No one chooses links or pages with equal probability.
There is no real potential to surf directly to each page on the web.
The 90-10 (or any fixed) breakdown is just a guess.
It does not take the back button or bookmarks into account.
We can only afford to work with a small sample of the web.

Despite these flaws, the model is sufficiently rich that computer scientists have
learned a great deal about properties of the web by studying it. To appreciate the
model, consider the small example on the previous page. Which page do you think
the random surfer is most likely to visit?

Each person using the web behaves a bit like the random surfer, so under-
standing the fate of the random surfer is of intense interest to people building web
infrastructure and web applications. The model is a tool for understanding the ex-
perience of each of the hundreds of millions of web users. In this section, you will
use the basic programming tools from this chapter
to study the model and its implications.

Input format We want to be able to study the
behavior of the random surfer on various web mod-
els, not just one example. Consequently, we want to
write data-driven code, where we keep data in files
and write programs that read the data from standard
input. The first step in this approach is to define an
input format that we can use to structure the infor-
mation in the input files. We are free to define any convenient input format.

Later in the book, you will learn how to read web pages in Java programs
(SECTION 3.1) and to convert from names to numbers (SECTION 4.4) as well as other
techniques for efficient graph processing. For now, we assume that there are N web
pages, numbered from 0 to N-1, and we represent links with ordered pairs of such
numbers, the first specifying the page containing the link and the second specifying
the page to which it refers. Given these conventions, a straightforward input for-
mat for the random surfer problem is an input stream consisting of an integer (the
value of N) followed by a sequence of pairs of integers (the representations of all
the links). StdIn treats all sequences of whitespace characters as a single delimiter,
so we are free to either put one link per line or arrange them several to a line.

Random surfer input format

N0 3

4 2

1

% more tiny.txt
5
0 1
1 2 1 2
1 3 1 3 1 4
2 3
3 0
4 0 4 2

links

!"#$%&'(')!"*+,,,:8. ./01/23,,,0425,67

164 Elements of Programming

Transition matrix We use a two-dimensional matrix, that we refer to as the
transition matrix, to completely specify the behavior of the random surfer. With N
web pages, we define an N-by-N matrix such that the entry in row i and column j
is the probability that the random surfer moves to page j when on page i. Our first
task is to write code that can create such a matrix for any given input. By the 90-10
rule, this computation is not difficult. We do so in three steps:

Read N, and then create arrays counts[][] and outDegree[].
Read the links and accumulate counts so that counts[i][j] counts the
links from i to j and outDegree[i] counts the links from i to anywhere.
Use the 90-10 rule to compute the probabilities.

The first two steps are elementary, and the third is not much more difficult: multi-
ply counts[i][j] by .90/degree[i] if there is a link from i to j (take a random
link with probability .9), and then add .10/N to each entry (go to a random page
with probability .1). Transition (PROGRAM 1.6.1) performs this calculation: It is a
filter that converts the list-of-links representation of a web model into a transition-
matrix representation.

The transition matrix is significant because each row represents a discrete
probability distribution—the entries fully specify the behavior of the random surf-
er’s next move, giving the probability of surfing to each page. Note in particular
that the entries sum to 1 (the surfer always goes somewhere).

The output of Transition defines another file format, one for matrices of
double values: the numbers of rows and columns followed by the values for matrix
entries. Now, we can write programs that read and process transition matrices.

Transition matrix computation

leap probabilities transition matrix

0 3

4 2

1

link probabilities

.02 .02 .02 .02 .02

.02 .02 .02 .02 .02

.02 .02 .02 .02 .02

.02 .02 .02 .02 .02

.02 .02 .02 .02 .02

 0 .90 0 0 0
 0 0 .36 .36 .18
 0 0 0 .90 0
.90 0 0 0 0
.45 0 .45 0 0

link counts

 0 1 0 0 0
 0 0 2 2 1
 0 0 0 1 0
 1 0 0 0 0
 1 0 1 0 0

degrees
 1
 5
 1
 1
 2

input graph 5
0 1
1 2 1 2
1 3 1 3 1 4
2 3
3 0
4 0 4 2

.02 .92 .02 .02 .02

.02 .02 .38 .38 .20

.02 .02 .02 92 .02

.92 .02 .02 .02 .02

.47 .02 .47 .02 .02

+ =

!"#$%&'(')!"*+,,,:8- ./01/23,,,0425,67

1651.6 Case Study: Random Web Surfer

% java Transition < tiny.txt
5 5
 0.02000 0.92000 0.02000 0.02000 0.02000
 0.02000 0.02000 0.38000 0.38000 0.20000
 0.02000 0.02000 0.02000 0.92000 0.02000
 0.92000 0.02000 0.02000 0.02000 0.02000
 0.47000 0.02000 0.47000 0.02000 0.02000

% more tiny.txt
5
0 1
1 2 1 2
1 3 1 3 1 4
2 3
3 0
4 0 4 2

Program 1.6.1 Computing the transition matrix

public class Transition
{
 public static void main(String[] args)
 { // Print random-surfer probabilites.
 int N = StdIn.readInt();
 int[][] counts = new int[N][N];
 int[] outDegree = new int[N];
 while (!StdIn.isEmpty())
 { // Accumulate link counts.
 int i = StdIn.readInt();
 int j = StdIn.readInt();
 outDegree[i]++;
 counts[i][j]++;
 }

 StdOut.println(N + " " + N);
 for (int i = 0; i < N; i++)
 { // Print probability distribution for row i.
 for (int j = 0; j < N; j++)
 { // Print probability for column j.
 double p = .90*counts[i][j]/outDegree[i] + .10/N;
 StdOut.printf("%8.5f", p);
 }
 StdOut.println();
 }
 }
}

This program is a filter that reads links from standard input and produces the corresponding
transition matrix on standard output. First, it processes the input to count the outlinks from
each page. Then it applies the 90-10 rule to compute the transition matrix (see text). It assumes
that there are no pages that have no outlinks in the input (see Exercise 1.6.3).

N number of pages

counts[i][j]
count of links from
page i to page j

outDegree[i]
count of links from
page i to anywhere

p transition probability

!"#$%&'(')!"*+,,,:85 ./01/23,,,0425,67

166 Elements of Programming

Generating a random integer from a discrete distribution

 0 1 2 3 4
.47 .02 .47 .02 .02
.47 .49 .96 .98 1.0

probabilities p[page][j]

cumulated sum values

j

 0.0 .47 .49 .96 .98 1.0

 generate .71, return 2

Simulation Given the transition matrix, simulating the behavior of the random
surfer involves surprisingly little code, as you can see in RandomSurfer (PROGRAM
1.6.2). This program reads a transition matrix and surfs according to the rules,
starting at page 0 and taking the number of moves as a command-line argument.
It counts the number of times that the surfer visits each page. Dividing that count
by the number of moves yields an estimate of the probability that a random surfer
winds up on the page. This probability is known as the page’s rank. In other words,
RandomSurfer computes an estimate of all page ranks.

One random move. The key to the computation is the random move, which is
specified by the transition matrix. We maintain a variable page whose value is the
current location of the surfer. Row page of the matrix gives, for each j, the prob-
ability that the surfer next goes to j. In other words, when the surfer is at page,

our task is to generate a random inte-
ger between 0 and N-1 according to the
distribution given by row page in the
transition matrix (the one-dimensional
array p[page]). How can we accomplish
this task? We can use Math.random() to
generate a random number r between 0
and 1, but how does that help us get to
a random page? One way to answer this
question is to think of the probabilities
in row page as defining a set of N inter-

vals in (0, 1) with each probability corresponding to an interval length. Then our
random variable r falls into one of the intervals, with probability precisely specified
by the interval length. This reasoning leads to the following code:

double sum = 0.0;
for (int j = 0; j < N; j++)
{ // Find interval containing r.
 sum += p[page][j];
 if (r < sum) { page = j; break; }
}

The variable sum tracks the endpoints of the intervals defined in row p[page], and
the for loop finds the interval containing the random value r. For example, sup-
pose that the surfer is at page 4 in our example. The transition probabilities are .47,

!"#$%&'(')!"*+,,,:88 ./01/23,,,0425,67

1671.6 Case Study: Random Web Surfer

% java Transition < tiny.txt | java RandomSurfer 100
 0.24000 0.23000 0.16000 0.25000 0.12000
% java Transition < tiny.txt | java RandomSurfer 10000
 0.27280 0.26530 0.14820 0.24830 0.06540
% java Transition < tiny.txt | java RandomSurfer 1000000
0.27324 0.26568 0.14581 0.24737 0.06790

Program 1.6.2 Simulating a random surfer

public class RandomSurfer
{
 public static void main(String[] args)
 { // Simulate random-surfer leaps and links.
 int T = Integer.parseInt(args[0]);
 int N = StdIn.readInt();
 StdIn.readInt();

 // Read transition matrix.
 double[][] p = new double[N][N];
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 p[i][j] = StdIn.readDouble();

 int page = 0; // Start at page 0.
 int[] freq = new int[N];
 for (int t = 0; t < T; t++)
 { // Make one random move.
 double r = Math.random();
 double sum = 0.0;
 for (int j = 0; j < N; j++)
 { // Find interval containing r.
 sum += p[page][j];
 if (r < sum) { page = j; break; }
 }
 freq[page]++;
 }

 for (int i = 0; i < N; i++) // Print page ranks.
 StdOut.printf("%8.5f", (double) freq[i] / T);
 StdOut.println();
 }
}

This program uses a transition matrix to simulate the behavior of a random surfer. It takes the
number of moves as a command-line argument, reads the transition matrix, performs the in-
dicated number of moves as prescribed by the matrix, and prints the relative frequency of hit-
ting each page. The key to the computation is the random move to the next page (see text).

T number of moves

N number of pages

page current page

p[i][j]
probability that the
surfer moves from
page i to page j

freq[i]
number of times the
surfer hits page i

!"#$%&'(')!"*+,,,:81 ./01/23,,,0425,67

168 Elements of Programming

.02, .47, .02, and .02, and sum takes on the values 0.0, 0.47, 0.49, 0.96, 0.98, and
1.0. These values indicate that the probabilities define the five intervals (0, .47),
(.47, .49), (.49, .96), (.96, .98), and (.98, 1), one for each page. Now, suppose that
Math.random() returns the value .71 . We increment j from 0 to 1 to 2 and stop
there, which indicates that .71 is in the interval (.49, .96), so we send the surfer to
the third page (page 2). Then, we perform the same computation for p[2], and the
random surfer is off and surfing. For large N, we can use binary search to substan-
tially speed up this computation (see EXERCISE 4.2.36). Typically, we are interested
in speeding up the search in this situation because we are likely to need a huge
number of random moves, as you will see.

Markov chains. The random process that describes the surfer’s behavior is known
as a Markov chain, named after the Russian mathematician Andrey Markov, who
developed the concept in the early 20th century. Markov chains are widely appli-
cable, well-studied, and have many remarkable and useful properties. For exam-
ple, you may have wondered why RandomSurfer starts the random surfer at page
0 whereas you might have expected a random choice. A basic limit theorem for
Markov chains says that the surfer could start anywhere, because the probability
that a random surfer eventually winds up on any particular page is the same for all
starting pages! No matter where the surfer starts, the process eventually stabilizes to
a point where further surfing provides no further information. This phenomenon
is known as mixing. Though this phenomenon is perhaps counterintuitive at first,
it explains coherent behavior in a situation that might seem chaotic. In the present
context, it captures the idea that the web looks pretty much the same to everyone
after surfing for a sufficiently long time. However, not all Markov chains have this
mixing property. For example, if we eliminate the random leap from our model,
certain configurations of web pages can present problems for the surfer. Indeed,
there exist on the web sets of pages known as spider traps, which are designed to
attract incoming links but have no outgoing links. Without the random leap, the
surfer could get stuck in a spider trap. The primary purpose of the 90-10 rule is to
guarantee mixing and eliminate such anomalies.

Page ranks. The RandomSurfer simulation is straightforward: it loops for the in-
dicated number of moves, randomly surfing through the graph. Because of the
mixing phenomenon, increasing the number of iterations gives increasingly ac-
curate estimates of the probability that the surfer lands on each page (the page

!"#$%&'(')!"*+,,,:89 ./01/23,,,0425,67

1691.6 Case Study: Random Web Surfer

ranks). How do the results compare with your intuition when you first thought
about the question? You might have guessed that page 4 was the lowest-ranked
page, but did you think that pages 0 and 1 would rank higher than page 3? If we
want to know which page is the highest rank, we need more precision and more
accuracy. RandomSurfer needs 10n moves to get answers precise to n decimal places
and many more moves for those answers to stabilize to an accurate value. For our
example, it takes tens of thousands of iterations to get answers accurate to two
decimal places and millions of iterations to get answers accurate to three places (see
EXERCISE 1.6.5). The end result is that page 0 beats page 1 by 27.3% to 26.6%. That
such a tiny difference would appear in such a small problem is quite surprising: if
you guessed that page 0 is the most likely spot for the surfer to end up, you were
lucky! Accurate page rank estimates for the web are valuable in practice for many
reasons. First, using them to put in order the pages that match the search criteria
for web searches proved to be vastly more in line with people’s expectations than
previous methods. Next, this measure of confidence and reliability led to the in-
vestment of huge amounts of money in web advertising based on page ranks. Even
in our tiny example, page ranks might be used to convince advertisers to pay up to
four times as much to place an ad on page 0 as on page 4. Comput-
ing page ranks is mathematically sound, an interesting computer
science problem, and big business, all rolled into one.

Visualizing the histogram. With StdDraw, it is also easy to create a
visual representation that can give you a feeling for how the random
surfer visit frequencies converge to the page ranks. Simply add

StdDraw.clear();
StdDraw.setXscale(-1, N);
StdDraw.setYscale(0, t);
StdDraw.setPenRadius(.5/N);
for (int i = 0; i < N; i++)
 StdDraw.line(i, 0, i, freq[i]);
StdDraw.show(20);

to the random move loop, run RandomSurfer for large values of T, and you will see
a drawing of the frequency histogram that eventually stabilizes to the page ranks.
After you have used this tool once, you are likely to find yourself using it every time

Page ranks with histogram

0 3

4 2

1

0 .27
1 .27
3 .25
2 .15
4 .07

!"#$%&'(')!"*+,,,:83 ./01/23,,,0425,67

170 Elements of Programming

you want to study a new model (perhaps with some minor adjustments to handle
larger models).

Studying other models. RandomSurfer and Transition are excellent examples of
data-driven programs. You can easily create a data model just by creating a file like
tiny.txt that starts with an integer N and then specifies pairs of integers between
0 and N-1 that represent links connecting pages. You are encouraged to run it for
various data models as suggested in the exercises, or to make up some models of
your own to study. If you have ever wondered how web page ranking works, this
calculation is your chance to develop better intuition about what causes one page
to be ranked more highly than another. What kind of page is likely to be rated
highly? One that has many links to other pages, or one that has just a few links to
other pages? The exercises in this section present many opportunities to study the
behavior of the random surfer. Since RandomSurfer uses standard input, you can
write simple programs that generate large input models, pipe their output to Ran-
domSurfer, and therefore study the random surfer on large models. Such flexibility
is an important reason to use standard input and standard output.

DIRECTLY SIMULATING THE BEHAVIOR OF A random surfer to understand the structure
of the web is appealing, but it has limitations. Think about the following question:
Could you use it to compute page ranks for a web model with millions (or billions!)
of web pages and links? The quick answer to this question is no, because you can-
not even afford to store the transition matrix for such a large number of pages. A
matrix for millions of pages would have trillions of entries. Do you have that much
space on your computer? Could you use RandomSurfer to find page ranks for a
smaller model with, say, thousands of pages? To answer this question, you might
run multiple simulations, record the results for a large number of trials, and then
interpret those experimental results. We do use this approach for many scientific
problems (the gambler’s ruin problem is one example; SECTION 2.4 is devoted to
another), but it can be very time-consuming, as a huge number of trials may be
necessary to get the desired accuracy. Even for our tiny example, we saw that it takes
millions of iterations to get the page ranks accurate to three or four decimal places.
For larger models, the required number of iterations to obtain accurate estimates
becomes truly huge.

!"#$%&'(')!"*+,,,:12 ./01/23,,,0425,67

1711.6 Case Study: Random Web Surfer

Mixing a Markov chain It is important to remember that the page ranks are a
property of the web model, not any particular approach for computing it. That is,
RandomSurfer is just one way to compute page ranks. Fortunately, a simple com-
putational model based on a well-studied area of mathematics provides a far more
efficient approach than simulation to the problem of computing page ranks. That
model makes use of the basic arithmetic operations on two-dimensional matrices
that we considered in SECTION 1.4.

Squaring a Markov chain. What is the probability that the random surfer will
move from page i to page j in two moves? The first move goes to an intermedi-
ate page k, so we calculate the probability of moving from i to k and then from k
to j for all possible k and add up the results. For
our example, the probability of moving from 1
to 2 in two moves is the probability of moving
from 1 to 0 to 2 (.02$.02), plus the probability
of moving from 1 to 1 to 2 (.02$.38), plus the
probability of moving from 1 to 2 to 2 (.38$.02),
plus the probability of moving from 1 to 3 to 2
(.38$.02), plus the probability of moving from
1 to 4 to 2 (.20$.47), which adds up to a grand
total of .1172. The same process works for each
pair of pages. This calculation is one that we have
seen before, in the definition of matrix multipli-
cation: the entry in row i and column j in the
result is the dot product of row i and column j in
the original. In other words, the result of multi-
plying p[][] by itself is a matrix where the entry
in row i and column j is the probability that the
random surfer moves from page i to page j in
two moves. Studying the entries of the two-move
transition matrix for our example is well worth
your time and will help you better understand the
movement of the random surfer. For instance, the
largest entry in the square is the one in row 2 and column 0, reflecting the fact that
a surfer starting on page 2 has only one link out, to page 3, where there is also only
one link out, to page 0. Therefore, by far the most likely outcome for a surfer start-

Squaring a Markov chain

p
2

p

0 3

4 2

1

.02 .92 .02 .02 .02

.02 .02 .38 .38 .20

.02 .02 .02 .92 .02

.92 .02 .02 .02 .02

.47 .02 .47 .02 .02

.05 .04 .36 .37 .19

.45 .04 .12 .37 .02

.86 .04 .04 .05 .02

.05 .85 .04 .05 .02

.05 .44 .04 .45 .02

probability of
surfing from i to 2

in one move

probability of
surfing from 1 to i

in one move

probability of
surfing from 1 to 2

in two moves
(dot product)

!"#$%&'(')!"*+,,,:1: ./01/23,,,0425,67

172 Elements of Programming

ing on page 2 is to end up in page 0 after two moves. All of the other two-move
routes involve more choices and are less probable. It is important to note that this
is an exact computation (up to the limitations of Java’s floating-point precision), in
contrast to RandomSurfer, which produces an estimate and needs more iterations
to get a more accurate estimate.

The power method. We might then calculate the probabilities for three moves by
multiplying by p[][] again, and for four moves by multiplying by p[][] yet again,
and so forth. However, matrix-matrix multiplication is expensive, and we are actu-
ally interested in a vector-matrix calculation. For our example, we start with the
vector

[1.0 0.0 0.0 0.0 0.0]

which specifies that the random surfer starts on page 0. Multiplying this vector by
the transition matrix gives the vector

[.02 .92 .02 .02 .02]

which is the probabilities that the surfer winds up on each of the pages after one
step. Now, multiplying this vector by the transition matrix gives the vector

[.05 .04 .36 .37 .19]

which contains the probabilities that the surfer winds up on each of the pages after
two steps. For example, the probability of moving from 0 to 2 in two moves is the
probability of moving from 0 to 0 to 2 (.02$.02), plus the probability of mov-
ing from 0 to 1 to 2 (.92$.38), plus the probability of moving from 0 to 2 to 2
(.02$.02), plus the probability of moving from 0 to 3 to 2 (.02$.02), plus the prob-
ability of moving from 0 to 4 to 2 (.02$.47), which adds up to a grand total of .36
. From these initial calculations, the pattern is clear: The vector giving the probabili-
ties that the random surfer is at each page after t steps is precisely the product of the
corresponding vector for t !1 steps and the transition matrix. By the basic limit theo-
rem for Markov chains, this process converges to the same vector no matter where
we start; in other words, after a sufficient number of moves, the probability that
the surfer ends up on any given page is independent of the starting point. Markov
(PROGRAM 1.6.3) is an implementation that you can use to check convergence for
our example. For instance, it gets the same results (the page ranks accurate to two
decimal places) as RandomSurfer, but with just 20 matrix-vector multiplications

!"#$%&'(')!"*+,,,:10 ./01/23,,,0425,67

1731.6 Case Study: Random Web Surfer

The power method for computing page ranks (limit values of transition probabilities)

.02 .92 .02 .02 .02

.02 .02 .38 .38 .20

.02 .02 .02 .92 .02

.92 .02 .02 .02 .02

.47 .02 .47 .02 .02

probability of surfing from 0 to 2
in two moves (dot product)

probabilities of surfing
from i to 2 in one move

probabilities of surfing
from 0 to i in one move

probabilities of surfing
from 0 to i in one move

probabilities of surfing
from 0 to i in three moves

probabilities of surfing
from 0 to i in two moves

= [.02 .92 .02 .02 .02][1.0 0.0 0.0 0.0 0.0] *

= [.05 .04 .36 .37 .19][.02 .92 .02 .02 .02] *

p[][] newRank[]rank[]

first move

second move

.02 .92 .02 .02 .02

.02 .02 .38 .38 .20

.02 .02 .02 .92 .02

.92 .02 .02 .02 .02

.47 .02 .47 .02 .02

probabilities of surfing
from 0 to i in two moves

= [.44 .06 .12 .36 .03][.05 .04 .36 .37 .19] *

third move

.02 .92 .02 .02 .02

.02 .02 .38 .38 .20

.02 .02 .02 .92 .02

.92 .02 .02 .02 .02

.47 .02 .47 .02 .02

probabilities of surfing
from 0 to i in 20 moves

(steady state)

probabilities of surfing
from 0 to i in 19 moves

= [.27 .26 .15 .25 .07][.27 .26 .15 .25 .07] *

20th move

.02 .92 .02 .02 .02

.02 .02 .38 .38 .20

.02 .02 .02 .92 .02

.92 .02 .02 .02 .02

.47 .02 .47 .02 .02

.

.

.

!"#$%&'(')!"*+,,,:1. ./01/23,,,0425,67

174 Elements of Programming

% java Transition < tiny.txt | java Markov 20
 0.27245 0.26515 0.14669 0.24764 0.06806

% java Transition < tiny.txt | java Markov 40
 0.27303 0.26573 0.14618 0.24723 0.06783

Program 1.6.3 Mixing a Markov chain

public class Markov
{ // Compute page ranks after T moves.
 public static void main(String[] args)
 {
 int T = Integer.parseInt(args[0]);
 int N = StdIn.readInt();
 StdIn.readInt();

 // Read p[][] from StdIn.
 double[][] p = new double[N][N];
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 p[i][j] = StdIn.readDouble();

 // Use the power method to compute page ranks.
 double[] rank = new double[N];
 rank[0] = 1.0;
 for (int t = 0; t < T; t++)
 { // Compute effect of next move on page ranks.
 double[] newRank = new double[N];
 for (int j = 0; j < N; j++)
 { // New rank of page j is dot product
 // of old ranks and column j of p[][].
 for (int k = 0; k < N; k++)
 newRank[j] += rank[k]*p[k][j];
 }

 for (int j = 0; j < N; j++)
 rank[j] = newRank[j];
 }

 for (int i = 0; i < N; i++) // Print page ranks.
 StdOut.printf("%8.5f", rank[i]);
 StdOut.println();
 }
}

This program reads a transition matrix from standard input and computes the probabilities
that a random surfer lands on each page (page ranks) after the number of steps specified as
command-line argument.

T number of iterations

N number of pages

p[][] transition matrix

rank[] page ranks

newRank[] new page ranks

!"#$%&'(')!"*+,,,:1- ./01/23,,,0425,67

1751.6 Case Study: Random Web Surfer

Page ranks with histogram for a larger example

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

 0 .002
 1 .017
 2 .009
 3 .003
 4 .006
 5 .016
 6 .066
 7 .021
 8 .017
 9 .040
 10 .002
 11 .028
 12 .006
 13 .045
 14 .018
 15 .026
 16 .023
 17 .005
 18 .023
 19 .026
 20 .004
 21 .034
 22 .063
 23 .043
 24 .011
 25 .005
 26 .006
 27 .008
 28 .037
 29 .003
 30 .037
 31 .023
 32 .018
 33 .013
 34 .024
 35 .019
 36 .003
 37 .031
 38 .012
 39 .023
 40 .017
 41 .021
 42 .021
 43 .016
 44 .023
 45 .006
 46 .023
 47 .024
 48 .019
 49 .016

6 22

!"#$%&'(')!"*+,,,:15 ./01/23,,,0425,67

176 Elements of Programming

instead of the tens of thousands of iterations needed by RandomSurfer. Another 20
multiplications gives the results accurate to three decimal places, as compared with
millions of iterations for RandomSurfer, and just a few more give the results to full
precision (see EXERCISE 1.6.6).

MARKOV CHAINS ARE WELL-STUDIED, BUT THEIR impact on the web was not truly felt un-
til 1998, when two graduate students, Sergey Brin and Lawrence Page, had the au-
dacity to build a Markov chain and compute the probabilities that a random surfer
hits each page for the whole web. Their work revolutionized web search and is the
basis for the page ranking method used by GOOGLE, the highly successful web search
company that they founded. Specifically, the company periodically recomputes the
random surfer’s probability for each page. Then, when you do a search, it lists the
pages related to your search keywords in order of these ranks. Such page ranks
now predominate because they somehow correspond to the expectations of typi-
cal web users, reliably providing them with relevant web pages for typical searches.
The computation that is involved is enormously time-consuming, due to the huge
number of pages on the web, but the result has turned out to be enormously profit-
able and well worth the expense. The method used in Markov is far more efficient
than simulating the behavior of a random surfer, but it is still too slow to actually
compute the probabilities for a huge matrix corresponding to all the pages on the
web. That computation is enabled by better data structures for graphs (see CHAPTER
4).

Lessons Developing a full understanding of the random surfer model is beyond
the scope of this book. Instead, our purpose is to show you an application that in-
volves writing a bit more code than the short programs that we have been using to
teach specific concepts. What specific lessons can we learn from this case study?

We already have a full computational model. Primitive types of data and strings,
conditionals and loops, arrays, and standard input/output enable you to address in-
teresting problems of all sorts. Indeed, it is a basic precept of theoretical computer
science that this model suffices to specify any computation that can be performed
on any reasonable computing device. In the next two chapters, we discuss two criti-
cal ways in which the model has been extended to drastically reduce the amount of
time and effort required to develop large and complex programs.

!"#$%&'(')!"*+,,,:18 ./01/23,,,0425,67

1771.6 Case Study: Random Web Surfer

Data-driven code is prevalent. The concept of using standard input and output
streams and saving data in files is a powerful one. We write filters to convert from
one kind of input to another, generators that can produce huge input files for study,
and programs that can handle a wide variety of different models. We can save data
for archiving or later use. We can also process data derived from some other source
and then save it in a file, whether it is from a scientific instrument or a distant
website. The concept of data-driven code is an easy and flexible way to support this
suite of activities.

Accuracy can be elusive. It is a mistake to assume that a program produces ac-
curate answers simply because it can print numbers to many decimal places of
precision. Often, the most difficult challenge that we face is ensuring that we have
accurate answers.

Uniform random numbers are only a start. When we speak informally about
random behavior, we often are thinking of something more complicated than the
“every value equally likely” model that Math.random() gives us. Many of the prob-
lems that we consider involve working with random numbers from other distribu-
tions, such as RandomSurfer.

Efficiency matters. It is also a mistake to assume that your computer is so fast that
it can do any computation. Some problems require much more computational ef-
fort than others. CHAPTER 4 is devoted to a thorough discussion of evaluating the
performance of the programs that you write. We defer detailed consideration of
such issues until then, but remember that you always need to have some general
idea of the performance requirements of your programs.

PERHAPS THE MOST IMPORTANT LESSON TO learn from writing programs for complicated
problems like the example in this section is that debugging is difficult. The polished
programs in the book mask that lesson, but you can rest assured that each one is
the product of a long bout of testing, fixing bugs, and running the programs on nu-
merous inputs. Generally we avoid describing bugs and the process of fixing them
in the text because that makes for a boring account and overly focuses attention on
bad code, but you can find some examples and descriptions in the exercises and on
the booksite.

!"#$%&'(')!"*+,,,:11 ./01/23,,,0425,67

178 Elements of Programming

Exercises

1.6.1 Modify Transition to take the leap probability from the command line
and use your modified version to examine the effect on page ranks of switching to
an 80-20 rule or a 95-5 rule.

1.6.2 Modify Transition to ignore the effect of multiple links. That is, if there
are multiple links from one page to another, count them as one link. Create a small
example that shows how this modification can change the order of page ranks.

1.6.3 Modify Transition to handle pages with no outgoing links, by filling rows
corresponding to such pages with the value 1/N.

1.6.4 The code fragment in RandomSurfer that generates the random move fails
if the probabilities in the row p[page] do not add up to 1. Explain what happens in
that case, and suggest a way to fix the problem.

1.6.5 Determine, to within a factor of 10, the number of iterations required by
RandomSurfer to compute page ranks to four decimal places and to five decimal
places for tiny.txt.

1.6.6. Determine the number of iterations required by Markov to compute page
ranks to three decimal places, to four decimal places, and to ten decimal places for
tiny.txt.

1.6.7 Download the file medium.txt from the booksite (which reflects the 50-
page example depicted in this section) and add to it links from page 23 to every
other page. Observe the effect on the page ranks, and discuss the result.

1.6.8 Add to medium.txt (see the previous exercise) links to page 23 from every
other page, observe the effect on the page ranks, and discuss the result.

1.6.9 Suppose that your page is page 23 in medium.txt. Is there a link that you
could add from your page to some other page that would raise the rank of your
page?

1.6.10 Suppose that your page is page 23 in medium.txt. Is there a link that you
could add from your page to some other page that would lower the rank of that
page?

!"#$%&'(')!"*+,,,:19 ./01/23,,,0425,67

1791.6 Case Study: Random Web Surfer

1.6.11 Use Transition and RandomSurfer to determine the transition probabili-
ties for the eight-page example shown below.

1.6.12 Use Transition and Markov to determine the transition probabilities for
the eight-page example shown below.

Eight-page example

0 3

5

4 2

7

6

1

!"#$%&'(')!"*+,,,:13 ./01/23,,,0425,67

180 Elements of Programming

Creative Exercises

1.6.13 Matrix squaring. Write a program like Markov that computes page ranks
by repeatedly squaring the matrix, thus computing the sequence p, p 2, p 4, p 8, p 16,
and so forth. Verify that all of the rows in the matrix converge to the same values.

1.6.14 Random web. Write a generator for Transition that takes as input a page
count N and a link count M and prints to standard output N followed by M random
pairs of integers from 0 to N-1. (See SECTION 4.5 for a discussion of more realistic
web models.)

1.6.15 Hubs and authorities. Add to your generator from the previous exercise a
fixed number of hubs, which have links pointing to them from 10% of the pages,
chosen at random, and authorities, which have links pointing from them to 10% of
the pages. Compute page ranks. Which rank higher, hubs or authorities?

1.6.16 Page ranks. Design an array of pages and links where the highest-ranking
page has fewer links pointing to it than some other page.

1.6.17 Hitting time. The hitting time for a page is the expected number of moves
between times the random surfer visits the page. Run experiments to estimate page
hitting times for tiny.txt, compare with page ranks, formulate a hypothesis about
the relationship, and test your hypothesis on medium.txt.

1.6.18 Cover time. Write a program that estimates the time required for the ran-
dom surfer to visit every page at least once, starting from a random page.

1.6.19 Graphical simulation. Create a graphical simulation where the size of the
dot representing each page is proportional to its rank. To make your program data-
driven, design a file format that includes coordinates specifying where each page
should be drawn. Test your program on medium.txt.

!"#$%&'(')!"*+,,,:92 ./01/23,,,0425,67

1811.6 Case Study: Random Web Surfer

!"#$%&'(')!"*+,,,:9: ./01/23,,,0425,67

