3.3 Designing Data Types

Object Oriented Programming

Procedural programming. [verb-oriented]
- Tell the computer to do this.
- Tell the computer to do that.

Alan Kay’s philosophy. Software is a simulation of the real world.
- We know (approximately) how the real world works.
- Design software to model the real world.

Objected oriented programming (OOP). [noun-oriented]
- Programming paradigm based on data types.
- Identify things that are part of the problem domain or solution.
- Things in the world know things: instance variables.
- Things in the world do things: methods.

Alan Kay

Alan Kay. [Xerox PARC 1970s]
- Invented Smalltalk programming language.
- Conceived Dynabook portable computer.
- Ideas led to: laptop, modern GUI, OOP.

“ The computer revolution hasn’t started yet. ”
“ The best way to predict the future is to invent it. ”
“ If you don’t fail at least 90 per cent of the time, you’re not aiming high enough. ”

— Alan Kay

Encapsulation

Bond. What’s your escape route?
Saunders. Sorry old man. Section 26 paragraph 5, that information is on a need-to-know basis only. I’m sure you’ll understand.
Encapsulation

Data type. Set of values and operations on those values.
Ex. `int`, `String`, `Complex`, `Vector`, `Document`, `GuitarString`, `Tour`, ...

Encapsulated data type. Hide internal representation of data type.

Separate implementation from design specification.
- **Class** provides data representation and code for operations.
- **Client** uses data type as black box.
- **API** specifies contract between client and class.

Bottom line. You don’t need to know how a data type is implemented in order to use it.

Intuition

Counter Data Type

Counter. Data type to count electronic votes.

```java
public class Counter {
    public int count;
    public final String name;
    public Counter(String id) { name = id; }
    public void increment() { count++; }
    public int value() { return count; }
}
```

Legal Java client.

```java
Counter c = new Counter("Volusia County");
c.count = -16022;
```

Oops. Al Gore receives -16,022 votes in Volusia County, Florida.
Counter. **Encapsulated** data type to count electronic votes.

```java
public class Counter {
    private int count;
    private final String name;
    public Counter(String id) { name = id; }
    public void increment() { count++; }
    public int value() { return count; }
}
```

Does not compile.

Counter c = new Counter("Volusia County");
c.count = -16022;

Benefit. Can guarantee that each data type value remains in a consistent state.

Encapsulation.
- Keep data representation hidden with **private** access modifier.
- Expose API to clients using **public** access modifier.

```java
public class Complex {
    private final double re, im;
    public Complex(double re, double im) { … }
    public double abs() { … }
    public Complex plus(Complex b) { … }
    public Complex times(Complex b) { … }
    public String toString() { … }
}
```

e.g., to polar coordinates

Advantage. Can switch internal representation without changing client.

Note. All our data types are already encapsulated!

Time Bombs

Internal representation changes.
- [VIN numbers] We’ll run out by 2010.

Lesson. By exposing data representation to client, need to sift through millions of lines of code in client to update.

Ask, Don’t Touch

Encapsulated data types.
- Don’t touch data and do whatever you want.
- Instead, ask object to manipulate its data.

“Ask, don’t touch.”

Lesson. Limiting scope makes programs easier to maintain and understand.

"principle of least privilege"
Immutability

Immutable data type. Object’s value cannot change once constructed.

Immutability: Advantages and Disadvantages

Immutable data type. Object’s value cannot change once constructed.

Advantages.
- Avoid aliasing bugs.
- Makes program easier to debug.
- Limits scope of code that can change values.
- Pass objects around without worrying about modification.

Disadvantage. New object must be created for every value.

Final Access Modifier

Final. Declaring an instance variable to be `final` means that you can assign it a value only once, in initializer or constructor.

```java
public class Counter {
    private final String name;
    private int count;
    ...
}
```

Advantages.
- Helps enforce immutability.
- Prevents accidental changes.
- Makes program easier to debug.
- Documents that the value cannot not change.
Spatial Vectors

Vector Data Type

Set of values. Sequence of real numbers. [Cartesian coordinates]

API.

public class Vector
{
 private int N;
 private double[] coords;

 public Vector(double[] a)
 {
 N = a.length;
 coords = new double[N];
 for (int i = 0; i < N; i++)
 coords[i] = a[i];
 }

 public double dot(Vector b)
 {
 double sum = 0.0;
 for (int i = 0; i < N; i++)
 sum += (coords[i] * b.coords[i]);
 return sum;
 }

 public Vector plus(Vector b)
 {
 double[] c = new double[N];
 for (int i = 0; i < N; i++)
 c[i] = coords[i] + b.coords[i];
 return new Vector(c);
 }
}

Vector Data Type Applications

Relevance. A quintessential mathematical abstraction.

Applications.

- Statistics.
- Linear algebra.
- Clustering and similarity search.
- Force, velocity, acceleration, momentum, torque.
- ...

Vector Data Type: Implementation
This. The keyword `this` is a reference to the invoking object.

Ex. When you invoke `a.magnitude()`, this is an alias for `a`.

```java
public Vector times(double t) {
    double[] c = new double[N];
    for (int i = 0; i < N; i++)
        c[i] = t * coords[i];
    return new Vector(c);
}

public double magnitude() {
    return Math.sqrt(this.dot(this));
}

public Vector direction() {
    return this.times(1.0 / this.magnitude());
}
...