4.1 Performance
“As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise - By what course of calculation can these results be arrived at by the machine in the shortest time?” – Charles Babbage
The Challenge

Q. Will my program be able to solve a large practical problem?

Key insight. [Knuth 1970s]
Use the **scientific method** to understand performance.
Scientific Method

Scientific method.

- **Observe** some feature of the natural world.
- **Hypothesize** a model that is consistent with the observations.
- **Predict** events using the hypothesis.
- **Verify** the predictions by making further observations.
- **Validate** by repeating until the hypothesis and observations agree.

Principles.

- Experiments we design must be reproducible.
- Hypothesis must be falsifiable.
Reasons to Analyze Algorithms

Predict performance.
- Will my program finish?
- When will my program finish?

Compare algorithms.
- Will this change make my program faster?
- How can I make my program faster?

Basis for inventing new ways to solve problems.
- Enables new technology.
- Enables new research.
Algorithmic Successes

Discrete Fourier transform.
- Break down waveform of N samples into periodic components.
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: N^2 steps.
- FFT algorithm: $N \log N$ steps, enables new technology.

Freidrich Gauss
1805
Algorithmic Successes

N-body Simulation.
- Simulate gravitational interactions among N bodies.
- Brute force: N^2 steps.
- Barnes-Hut: $N \log N$ steps, enables new research.

Andrew Appel
PU ’81
Three-Sum Problem

Three-sum problem. Given N integers, find triples that sum to 0.

Context. Deeply related to problems in computational geometry.

% more 8ints.txt
30 -30 -20 -10 40 0 10 5

% java ThreeSum < 8ints.txt
4
 30 -30 0
 30 -20 -10
-30 -10 40
-10 0 10

Q. How would you write a program to solve the problem?
public class ThreeSum {

 // return number of distinct triples (i, j, k)
 // such that (a[i] + a[j] + a[k] == 0)
 public static int count(int[] a) {
 int N = a.length;
 int cnt = 0;
 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0) cnt++;
 return cnt;
 }

 public static void main(String[] args) {
 int[] a = StdArrayIO.readInt1D();
 StdOut.println(count(a));
 }
}
Empirical Analysis
Empirical Analysis

Empirical analysis. Run the program for various input sizes.

<table>
<thead>
<tr>
<th>N</th>
<th>\textit{time} †</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>0.03</td>
</tr>
<tr>
<td>1024</td>
<td>0.26</td>
</tr>
<tr>
<td>2048</td>
<td>2.16</td>
</tr>
<tr>
<td>4096</td>
<td>17.18</td>
</tr>
<tr>
<td>8192</td>
<td>136.76</td>
</tr>
</tbody>
</table>

† Running Linux on Sun-Fire-X4100 with 16GB RAM
Q. How to time a program?
A. A stopwatch.
Stopwatch

Q. How to time a program?
A. A stopwatch object.

```java
public class Stopwatch {
    private final long start;

    public Stopwatch() {
        start = System.currentTimeMillis();
    }

    public double elapsedTime() {
        return (System.currentTimeMillis() - start) / 1000.0;
    }
}
```
Stopwatch

Q. How to time a program?
A. A stopwatch object.

```java
public class Stopwatch
{
    Stopwatch()
    {
        create a new stopwatch and start it running
    }
    double elapsedTime()
    {
        return the elapsed time since creation, in seconds
    }
}
```

```java
public static void main(String[] args) {
    int[] a = StdArrayIO.readInt1D();
    Stopwatch timer = new Stopwatch();
    StdOut.println(count(a));
    StdOut.println(timer.elapsedTime());
}
```
Empirical Analysis

Data analysis. Plot running time vs. input size N.

Q. How fast does running time grow as a function of input size N?
Empirical Analysis

Initial hypothesis. Running time obeys power law $f(N) = a N^b$.

Data analysis. Plot running time vs. input size N on a log-log scale.

Consequence. Power law yields straight line (slope = b).

Refined hypothesis. Running time grows as cube of input size: $a N^3$.
Doubling Hypothesis

Doubling hypothesis. Quick way to estimate \(b \) in a power law hypothesis.

Run program, doubling the size of the input?

<table>
<thead>
<tr>
<th>(N)</th>
<th>(time) (^\dagger)</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>0.033</td>
<td>-</td>
</tr>
<tr>
<td>1024</td>
<td>0.26</td>
<td>7.88</td>
</tr>
<tr>
<td>2048</td>
<td>2.16</td>
<td>8.43</td>
</tr>
<tr>
<td>4096</td>
<td>17.18</td>
<td>7.96</td>
</tr>
<tr>
<td>8192</td>
<td>136.76</td>
<td>7.96</td>
</tr>
</tbody>
</table>

seems to converge to a constant \(c = 8 \)

Hypothesis. Running time is about \(a N^b \) with \(b = \log c \).
Performance Challenge 1

Let $F(N)$ be running time of `main()` as a function of input N.

```
public static void main(String[] args) {
  ...
  int N = Integer.parseInt(args[0]);
  ...
}
```

Scenario 1. $F(2N) / F(N)$ converges to about 4.

Q. What is order of growth of the running time?
Performance Challenge 2

Let $F(N)$ be running time of `main()` as a function of input N.

```java
public static void main(String[] args) {
    ...
    int N = Integer.parseInt(args[0]);
    ...
}
```

Scenario 2. $F(2N) / F(N)$ converges to about 2.

Q. What is order of growth of the running time?
Prediction and Validation

Hypothesis. Running time is about $a \cdot N^3$ for input of size N.

Q. How to estimate a?

A. Run the program!

<table>
<thead>
<tr>
<th>N</th>
<th>time^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096</td>
<td>17.18</td>
</tr>
<tr>
<td>4096</td>
<td>17.15</td>
</tr>
<tr>
<td>4096</td>
<td>17.17</td>
</tr>
</tbody>
</table>

17.17 = $a \cdot 4096^3$
$\Rightarrow a = 2.5 \times 10^{-10}$

Refined hypothesis. Running time is about $2.5 \times 10^{-10} \times N^3$ seconds.

Prediction. 1,100 seconds for $N = 16,384$.

Observation.

<table>
<thead>
<tr>
<th>N</th>
<th>time^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>16384</td>
<td>1118.86</td>
</tr>
</tbody>
</table>

→ validates hypothesis!
Mathematical Analysis

Donald Knuth
Turing award '74
Mathematical Analysis

Running time. Count up frequency of execution of each instruction and weight by its execution time.

```java
int count = 0;
for (int i = 0; i < N; i++)
    if (a[i] == 0) count++;
```

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable declaration</td>
<td>2</td>
</tr>
<tr>
<td>variable assignment</td>
<td>2</td>
</tr>
<tr>
<td>less than comparison</td>
<td>N + 1</td>
</tr>
<tr>
<td>equal to comparison</td>
<td>N</td>
</tr>
<tr>
<td>array access</td>
<td>N</td>
</tr>
<tr>
<td>increment</td>
<td>≤ 2N</td>
</tr>
</tbody>
</table>

between N (no zeros) and 2N (all zeros)
Mathematical Analysis

Running time. Count up frequency of execution of each instruction and weight by its execution time.

```c
int count = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        if (a[i] + a[j] == 0) count++;
```

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable declaration</td>
<td>$N + 2$</td>
</tr>
<tr>
<td>variable assignment</td>
<td>$N + 2$</td>
</tr>
<tr>
<td>less than comparison</td>
<td>$1/2 (N + 1)(N + 2)$</td>
</tr>
<tr>
<td>equal to comparison</td>
<td>$1/2 N (N - 1)$</td>
</tr>
<tr>
<td>array access</td>
<td>$N(N - 1)$</td>
</tr>
<tr>
<td>increment</td>
<td>$\leq N^2$</td>
</tr>
</tbody>
</table>

$$0 + 1 + 2 + \ldots + (N-1) = 1/2 \; N(N-1)$$

becoming very tedious to count
Tilde Notation

Tilde notation.
- Estimate running time as a function of input size N.
- Ignore lower order terms.
 - when N is large, terms are negligible
 - when N is small, we don't care

Ex 1. $6 N^3 + 17 N^2 + 56 \sim 6 N^3$
Ex 2. $6 N^3 + 100 N^{4/3} + 56 \sim 6 N^3$
Ex 3. $6 N^3 + 17 N^2 \log N \sim 6 N^3$

Technical definition. $f(N) \sim g(N)$ means $\lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$
Running time. Count up frequency of execution of each instruction and weight by its execution time.

```java
public static int count(int[] a) {
    int N = a.length;
    int cnt = 0;
    for (int i = 0; i < N; i++)
        for (int j = i+1; j < N; j++)
            for (int k = j+1; k < N; k++)
                if (a[i] + a[j] + a[k] == 0)
                    cnt++;
    return cnt;
}
```

Inner loop. Focus on instructions in "inner loop."
Power law. Running time of a typical program is $\sim a N^b$.

Exponent b depends on: algorithm.

Leading constant a depends on:
- Algorithm.
- Input data.
- Caching.
- Machine.
- Compiler.
- Garbage collection.
- Just-in-time compilation.
- CPU use by other applications.

Our approach. Use doubling hypothesis (or mathematical analysis) to estimate exponent b, run experiments to estimate a.
Analysis: Empirical vs. Mathematical

Empirical analysis.
- Measure running times, plot, and fit curve.
- Easy to perform experiments.
- Model useful for predicting, but not for explaining.

Mathematical analysis.
- Analyze algorithm to estimate # ops as a function of input size.
- May require advanced mathematics.
- Model useful for predicting and explaining.

Critical difference. Mathematical analysis is independent of a particular machine or compiler; applies to machines not yet built.
Order of Growth Classifications

Observation. A small subset of mathematical functions suffice to describe running time of many fundamental algorithms.

- while \((N > 1)\) {
 \[
 N = N / 2; \\
 \ldots \\
 \]
 \(\lg N\)
 \[
 \lg N = \log_2 N
 \]

- for (int \(i = 0; i < N; i++\))
 \(\ldots\)
 \(N\)

- for (int \(i = 0; i < N; i++\))
 for (int \(j = 0; j < N; j++\))
 \(\ldots\)
 \(N^2\)

- public static void \(f\)(int \(N\)) {
 if (\(N == 0\)) return;
 \(f\)(\(N-1\));
 \(f\)(\(N-1\));
 \(\ldots\)
}

- \(2^N\)

- public static void \(g\)(int \(N\)) {
 if (\(N == 0\)) return;
 \(g\)(\(N/2\));
 \(g\)(\(N/2\));
 for (int \(i = 0; i < N; i++\))
 \(\ldots\)
}

- \(N\lg N\)
Order of Growth Classifications

Orders of growth (log-log plot)

<table>
<thead>
<tr>
<th>order of growth</th>
<th>function</th>
<th>factor for doubling hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>logarithmic</td>
<td>log N</td>
<td>1</td>
</tr>
<tr>
<td>linear</td>
<td>N</td>
<td>2</td>
</tr>
<tr>
<td>linearithmic</td>
<td>N log N</td>
<td>2</td>
</tr>
<tr>
<td>quadratic</td>
<td>N^2</td>
<td>4</td>
</tr>
<tr>
<td>cubic</td>
<td>N^3</td>
<td>8</td>
</tr>
<tr>
<td>exponential</td>
<td>2^N</td>
<td>2^N</td>
</tr>
</tbody>
</table>

Commonly encountered growth functions
Order of Growth: Consequences

<table>
<thead>
<tr>
<th>order of growth</th>
<th>predicted running time if problem size is increased by a factor of 100</th>
<th>order of growth</th>
<th>predicted factor of problem size increase if computer speed is increased by a factor of 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>a few minutes</td>
<td>linear</td>
<td>10</td>
</tr>
<tr>
<td>linearithmic</td>
<td>a few minutes</td>
<td>linearithmic</td>
<td>10</td>
</tr>
<tr>
<td>quadratic</td>
<td>several hours</td>
<td>quadratic</td>
<td>3-4</td>
</tr>
<tr>
<td>cubic</td>
<td>a few weeks</td>
<td>cubic</td>
<td>2-3</td>
</tr>
<tr>
<td>exponential</td>
<td>forever</td>
<td>exponential</td>
<td>1</td>
</tr>
</tbody>
</table>

Effect of increasing problem size for a program that runs for a few seconds

Effect of increasing computer speed on problem size that can be solved in a fixed amount of time
Dynamic Programming
Binomial Coefficients

Binomial coefficient. \(\binom{n}{k} \) = number of ways to choose \(k \) of \(n \) elements.

Ex. Number of possible 7-card poker hands = \(\binom{52}{7} \) = 2,598,960.

Ex. Probability of "quads" in Texas hold 'em:

\[
\frac{13}{52} \times \frac{4}{4} \times \frac{48}{\binom{48}{3}} = \frac{224,848}{133,784,560} \quad (about \ 594 : 1)
\]
Binomial Coefficients

Binomial coefficient. \(\binom{n}{k} = \) number of ways to choose \(k \) of \(n \) elements.

Pascal's identity. \[
\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}
\]

contains first element excludes first element

Pascal's triangle.
Binomial Coefficients: Sierpinski Triangle

Binomial coefficient. \(\binom{n}{k} \) = number of ways to choose \(k \) of \(n \) elements.

Sierpinski triangle. Color black the odd integers in Pascal’s triangle.
Binomial Coefficients: First Attempt

```java
public class SlowBinomial {

    // natural recursive implementation
    public static long binomial(long n, long k) {
        if (k == 0) return 1;
        if (n == 0) return 0;
        return binomial(n-1, k-1) + binomial(n-1, k);
    }

    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        int K = Integer.parseInt(args[1]);
        StdOut.println(binomial(N, K));
    }
}
```

Pascal's identity
Q. Is this an efficient way to compute binomial coefficients?
A. No, no, no! [same essential recomputation flaw as naïve Fibonacci]
Timing experiments: direct recursive solution.

<table>
<thead>
<tr>
<th>((2N, N))</th>
<th>time (\uparrow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(26, 13)</td>
<td>0.46</td>
</tr>
<tr>
<td>(28, 14)</td>
<td>1.27</td>
</tr>
<tr>
<td>(30, 15)</td>
<td>4.30</td>
</tr>
<tr>
<td>(32, 16)</td>
<td>15.69</td>
</tr>
<tr>
<td>(34, 17)</td>
<td>57.40</td>
</tr>
<tr>
<td>(36, 18)</td>
<td>230.42</td>
</tr>
</tbody>
</table>

increase \(N\) by 1, running time increases by about 4x

Q. Is running time linear, quadratic, cubic, exponential in \(N\)?
Let $F(N)$ be running time to compute $\text{binomial}(2N, N)$.

```java
public static long binomial(long n, long k) {
    if (k == 0) return 1;
    if (n == 0) return 0;
    return binomial(n-1, k-1) + binomial(n-1, k);
}
```

Observation. $F(N+1) / F(N)$ converges to about 4.

Q. What is order of growth of the running time?

A. Exponential: $a 4^N$. **will not finish unless N is small**
Dynamic Programming

Key idea. Save solutions to subproblems to avoid recomputation.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>15</td>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>

\[
\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}
\]

\[20 = 10 + 10\]

Tradeoff. Trade (a little) memory for (a huge amount of) time.
public class Binomial {
 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 int K = Integer.parseInt(args[1]);
 long[][] bin = new long[N+1][K+1];

 // base cases
 for (int k = 1; k <= K; k++) bin[0][K] = 0;
 for (int n = 0; n <= N; n++) bin[N][0] = 1;

 // bottom-up dynamic programming
 for (int n = 1; n <= N; n++)
 for (int k = 1; k <= K; k++)
 bin[n][k] = bin[n-1][k-1] + bin[n-1][k];

 // print results
 StdOut.println(bin[N][K]);
 }
}
Timing Experiments

Timing experiments for binomial coefficients via dynamic programming.

<table>
<thead>
<tr>
<th>((2N, N))</th>
<th>(time^\dagger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(26, 13)</td>
<td>instant</td>
</tr>
<tr>
<td>(28, 14)</td>
<td>instant</td>
</tr>
<tr>
<td>(30, 15)</td>
<td>instant</td>
</tr>
<tr>
<td>(32, 16)</td>
<td>instant</td>
</tr>
<tr>
<td>(34, 17)</td>
<td>instant</td>
</tr>
<tr>
<td>(36, 18)</td>
<td>instant</td>
</tr>
</tbody>
</table>

Q. Is running time linear, quadratic, cubic, exponential in \(N\)?
Let \(F(N) \) be running time to compute \(\text{binomial}(2N, \ N) \) using DP.

```java
for (int n = 1; n <= N; n++)
    for (int k = 1; k <= K; k++)
        bin[n][k] = bin[n-1][k-1] + bin[n-1][k];
```

Q. What is order of growth of the running time?

A. Quadratic: \(a N^2 \).

Remark. There is a profound difference between \(4^N \) and \(N^2 \).
Digression: Stirling's Approximation

Alternative: \(\binom{n}{k} = \frac{n!}{k! (n-k)!} \)

Caveat. 52! overflows a long, even though final result doesn't.

Instead of computing exact values, use Stirling's approximation:

\[
\ln n! \approx n \ln n - n + \frac{\ln(2\pi n)}{2} + \frac{1}{12n} - \frac{1}{360n^3} + \frac{1}{1260n^5}
\]

Application. Probability of exact k heads in n flips with a biased coin.

\[
\binom{n}{k} p^k (1-p)^{n-k} \quad \text{(easy to compute approximate value with Stirling's formula)}
\]
Memory
Typical Memory Requirements for Java Data Types

Bit. 0 or 1.

Byte. 8 bits.

Megabyte (MB). 1 million bytes $\sim 2^{10}$ bytes.

Gigabyte (GB). 1 billion bytes $\sim 2^{20}$ bytes.

<table>
<thead>
<tr>
<th>type</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>1</td>
</tr>
<tr>
<td>byte</td>
<td>1</td>
</tr>
<tr>
<td>char</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>8</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>type</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>int[]</td>
<td>$4N + 16$</td>
</tr>
<tr>
<td>double[]</td>
<td>$8N + 16$</td>
</tr>
<tr>
<td>Charge[]</td>
<td>$36N + 16$</td>
</tr>
<tr>
<td>int[][]</td>
<td>$4N^2 + 20N + 16$</td>
</tr>
<tr>
<td>double[][]</td>
<td>$8N^2 + 20N + 16$</td>
</tr>
<tr>
<td>String</td>
<td>$2N + 40$</td>
</tr>
</tbody>
</table>

Q. What’s the biggest `double[]` array you can store on your computer?

typical computer ’10 has about 2GB memory
Performance Challenge 6

Q. How much memory does this program require as a function of \(N \)?

```java
public class RandomWalk {
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        int[][] count = new int[N][N];
        int x = N/2;
        int y = N/2;

        for (int i = 0; i < N; i++) {
            // no new variable declared in loop
            ... count[x][y]++;
        }
    }
}
```

A.
Summary

Q. How can I evaluate the performance of my program?
A. Computational experiments, mathematical analysis, scientific method.

Q. What if it's not fast enough? Not enough memory?
 ■ Understand why.
 ■ Buy a faster computer.
 ■ Learn a better algorithm (COS 226, COS 423).
 ■ Discover a new algorithm.

<table>
<thead>
<tr>
<th>attribute</th>
<th>better machine</th>
<th>better algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>cost</td>
<td>$$$ or more</td>
<td>$ or less</td>
</tr>
<tr>
<td>applicability</td>
<td>makes "everything" run faster</td>
<td>does not apply to some problems</td>
</tr>
<tr>
<td>improvement</td>
<td>quantitative improvements</td>
<td>dramatic qualitative improvements possible</td>
</tr>
</tbody>
</table>