6.2: Combinational Circuits

Let’s Make an Adder Circuit

Goal: \( x + y = z \).

- We build 4-bit adder: 9 inputs, 4 outputs.
  (Same idea scales to 128-bit adder.)
- Key computer component.

Step 1.
  - Represent input and output in binary.

Step 2.
  - Build truth table.
  - Why is this a bad idea?
    - 128-bit adder: \( 2^{256+1} \) rows > # electrons in universe!

4-Bit Adder Truth Table

<table>
<thead>
<tr>
<th>( c_0 )</th>
<th>( x_3 )</th>
<th>( x_2 )</th>
<th>( x_1 )</th>
<th>( x_0 )</th>
<th>( y_3 )</th>
<th>( y_2 )</th>
<th>( y_1 )</th>
<th>( y_0 )</th>
<th>( z_3 )</th>
<th>( z_2 )</th>
<th>( z_1 )</th>
<th>( z_0 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

\( 2^{8+1} = 512 \) rows!

Let’s Make an Adder Circuit

Goal: \( x + y = z \).

Step 2.
  - Build truth table for carry bit.
  - Build truth table for summand bit.

Carry Bit

<table>
<thead>
<tr>
<th>( x_3 )</th>
<th>( y_3 )</th>
<th>( c_1 )</th>
<th>( c_0 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Summand Bit

<table>
<thead>
<tr>
<th>( x_3 )</th>
<th>( y_3 )</th>
<th>( c_1 )</th>
<th>( z_1 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Let's Make an Adder Circuit

Goal: $x + y = z$.

Step 3.
- Derive (simplified) Boolean expression.

<table>
<thead>
<tr>
<th>Carry Bit</th>
<th>Summand Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_0$ $y_0$ $c_i$ $c_{i+1}$ MAJ</td>
<td>$x_0$ $y_0$ $c_i$ $z_i$ ODD</td>
</tr>
<tr>
<td>0 0 0 0 0</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 1 0 0</td>
<td>0 0 1 1 1</td>
</tr>
<tr>
<td>0 1 0 0 0</td>
<td>0 1 0 1 1</td>
</tr>
<tr>
<td>0 1 1 1 1</td>
<td>0 1 1 0 0</td>
</tr>
<tr>
<td>1 0 0 0 0</td>
<td>1 0 0 1 1</td>
</tr>
<tr>
<td>1 0 1 1 1</td>
<td>1 0 1 0 0</td>
</tr>
<tr>
<td>1 1 0 1 1</td>
<td>1 1 0 0 0</td>
</tr>
<tr>
<td>1 1 1 1 1</td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>

$c_3$ $c_2$ $c_1$ $c_0 = 0$

$\begin{align*}
x_3 & \quad x_2 & \quad x_1 & \quad x_0 \\
+ & \quad y_3 & \quad y_2 & \quad y_1 & \quad y_0 \\
\hline
z_3 & \quad z_2 & \quad z_1 & \quad z_0
\end{align*}$

Step 4.
- Transform Boolean expression into circuit.

Subtractor

Subtractor circuit: $z = x - y$.
- One approach: design like adder circuit.
- Better idea: reuse adder circuit.
  - 2’s complement: to negate an integer, flip bits, then add 1

4-Bit Subtractor Interface

4-Bit Subtractor Implementation
N-Bit Decoder

N-bit decoder.
- N address inputs, $2^N$ data outputs.
- Addressed output bit is 1; all others are 0.

3-Bit Decoder Interface

3-Bit Decoder Implementation

3-Bit Decoder Interface

3-Bit Decoder Implementation

N-Bit Decoder

Application.
- Convert from binary to "unary."
- Decode opcode to instruction type.

4-Bit Decoder

2N-to-1 multiplexer.
- N select inputs, $2^N$ data inputs, 1 output.
- Copies "selected" data input bit to output.

8-to-1 Mux Interface

8-to-1 Mux Implementation
**8-to-1 Multiplexer**

- \(2^N\)-to-1 multiplexer.
  - \(N\) select inputs, \(2^N\) data inputs, 1 output.
  - Copies "selected" data input bit to output.

**8-to-1 Mux Interface**

**8-to-1 Mux Implementation**

**16-bit bus.**
- Bundle of 16 wires.
- Memory transfer, register transfer.

**8-bit bus.**
- Bundle of 8 wires.
- TOY memory address.

**4-bit bus.**
- Bundle of 4 wires.
- TOY register address.

---

**4-Wide 2-to-1 Multiplexer**

**Goal:** select from one of two 4-bit buses.
- Implement by layering 4 2-to-1 multiplexers.

**k-Wide n-to-1 Multiplexer**

**Goal:** select from one of \(n\) \(k\)-bit buses.
- Implement by layering \(k\) \(n\)-bit muxes.
Multiplexer: Application

Program counter
- Result of jump or branch instruction.
- Adding 1 to old program counter.

Use 8-wide 2-to-1 mux to route appropriate 8-bit address to PC.
- Unspecified detail: how to set control wire?

Arithmetic Logic Unit: Interface

ALU Interface.
- Add, subtract, bitwise and, bitwise xor, shift left, shift right, copy.
- Associate 3-bit integer with 5 primary ALU operations.
  - ALU performs operations in parallel
  - control wires select which result ALU outputs

Arithmetic Logic Unit: Implementation

Bitwise AND, XOR, NOT

Bitwise logical operations.
- Inputs x and y: n-bits each.
- Output z: n-bits.
- Apply logical operation to each corresponding pair of bits.
Abstraction and Encapsulation

Lessons for ADT apply to hardware!
  - Interface describes behavior of circuit.
  - Implementation gives details of how to build it.

Layers of abstraction apply with a vengeance!
  - TOY ALU is made of:
    - multiplexer, which is made of:
      - AND, OR, NOT gates
    - adder, which is made of:
      - AND, OR, NOT gates
    - and some other things also made of gates
  - TOY ALU will itself be a component of TOY computer (Lecture A5).