/****************************************************************************** * Compilation: javac StdIn.java * Execution: java StdIn (interactive test of basic functionality) * Dependencies: none * * Reads in data of various types from standard input. * ******************************************************************************/ import java.util.ArrayList; import java.util.InputMismatchException; import java.util.Locale; import java.util.NoSuchElementException; import java.util.Scanner; import java.util.regex.Pattern; /** * The {@code StdIn} class provides static methods for reading strings * and numbers from standard input. * These functions fall into one of four categories: * *

* Generally, it is best not to mix functions from the different * categories in the same program. *

* Getting started. * To use this class, you must have {@code StdIn.class} in your * Java classpath. If you used our autoinstaller, you should be all set. * Otherwise, either download * stdlib.jar * and add to your Java classpath or download * StdIn.java * and put a copy in your working directory. *

* Reading tokens from standard input and converting to numbers and strings. * You can use the following methods to read numbers, strings, and booleans * from standard input one at a time: *

*

* The first method returns true if standard input has no more tokens. * Each other method skips over any input that is whitespace. Then, it reads * the next token and attempts to convert it into a value of the specified * type. If it succeeds, it returns that value; otherwise, it * throws an {@link InputMismatchException}. *

* Whitespace includes spaces, tabs, and newlines; the full definition * is inherited from {@link Character#isWhitespace(char)}. * A token is a maximal sequence of non-whitespace characters. * The precise rules for describing which tokens can be converted to * integers and floating-point numbers are inherited from * Scanner, * using the locale {@link Locale#US}; the rules * for floating-point numbers are slightly different * from those in {@link Double#valueOf(String)}, * but unlikely to be of concern to most programmers. *

* As an example, the following code fragment reads integers from standard input, * one at a time, and prints them one per line. *

 *  while (!StdIn.isEmpty()) {
 *      double value = StdIn.readDouble();
 *      StdOut.println(value);
 *  }
 *  
*

* Reading characters from standard input. * You can use the following two methods to read characters from standard input one at a time: *

*

* The first method returns true if standard input has more input (including whitespace). * The second method reads and returns the next character of input on standard * input (possibly a whitespace character). *

* As an example, the following code fragment reads characters from standard input, * one character at a time, and prints it to standard output. *

 *  while (StdIn.hasNextChar()) {
 *      char c = StdIn.readChar();
 *      StdOut.print(c);
 *  }
 *  
*

* Reading lines from standard input. * You can use the following two methods to read lines from standard input: *

*

* The first method returns true if standard input has more input (including whitespace). * The second method reads and returns the remaining portion of * the next line of input on standard input (possibly whitespace), * discarding the trailing line separator. *

* A line separator is defined to be one of the following strings: * {@code \n} (Linux), {@code \r} (old Macintosh), * {@code \r\n} (Windows), * {@code \}{@code u2028}, {@code \}{@code u2029}, or {@code \}{@code u0085}. *

* As an example, the following code fragment reads text from standard input, * one line at a time, and prints it to standard output. *

 *  while (StdIn.hasNextLine()) {
 *      String line = StdIn.readLine();
 *      StdOut.println(line);
 *  }
 *  
*

* Reading a sequence of values of the same type from standard input. * You can use the following methods to read a sequence numbers, strings, * or booleans (all of the same type) from standard input: *

*

* The first three methods read of all of remaining token on standard input * and converts the tokens to values of * the specified type, as in the corresponding * {@code readDouble}, {@code readInt}, and {@code readString()} methods. * The {@code readAllLines()} method reads all remaining lines on standard * input and returns them as an array of strings. * The {@code readAll()} method reads all remaining input on standard * input and returns it as a string. *

* As an example, the following code fragment reads all of the remaining * tokens from standard input and returns them as an array of strings. *

 *  String[] words = StdIn.readAllStrings();
 *  
*

* Differences with Scanner. * {@code StdIn} and {@link Scanner} are both designed to parse * tokens and convert them to primitive types and strings. * The main differences are summarized below: *

*

* Historical note: {@code StdIn} preceded {@code Scanner}; when * {@code Scanner} was introduced, this class was re-implemented to use {@code Scanner}. *

* Using standard input. * Standard input is a fundamental operating system abstraction on Mac OS X, * Windows, and Linux. * The methods in {@code StdIn} are blocking, which means that they * will wait until you enter input on standard input. * If your program has a loop that repeats until standard input is empty, * you must signal that the input is finished. * To do so, depending on your operating system and IDE, * use either {@code } or {@code }, on its own line. * If you are redirecting standard input from a file, you will not need * to do anything to signal that the input is finished. *

* Known bugs. * Java's UTF-8 encoding does not recognize the optional * byte-order mask. * If the input begins with the optional byte-order mask, {@code StdIn} * will have an extra character {@code \}{@code uFEFF} at the beginning. *

* Reference. * For additional documentation, * see Section 1.5 of * Computer Science: An Interdisciplinary Approach * by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne * @author David Pritchard */ public final class StdIn { /*** begin: section (1 of 2) of code duplicated from In to StdIn. */ // assume Unicode UTF-8 encoding private static final String CHARSET_NAME = "UTF-8"; // assume language = English, country = US for consistency with System.out. private static final Locale LOCALE = Locale.US; // the default token separator; we maintain the invariant that this value // is held by the scanner's delimiter between calls private static final Pattern WHITESPACE_PATTERN = Pattern.compile("\\p{javaWhitespace}+"); // makes whitespace significant private static final Pattern EMPTY_PATTERN = Pattern.compile(""); // used to read the entire input private static final Pattern EVERYTHING_PATTERN = Pattern.compile("\\A"); /*** end: section (1 of 2) of code duplicated from In to StdIn. */ private static Scanner scanner; // it doesn't make sense to instantiate this class private StdIn() { } //// begin: section (2 of 2) of code duplicated from In to StdIn, //// with all methods changed from "public" to "public static" /** * Returns true if standard input is empty (except possibly for whitespace). * Use this method to know whether the next call to {@link #readString()}, * {@link #readDouble()}, etc. will succeed. * * @return {@code true} if standard input is empty (except possibly * for whitespace); {@code false} otherwise */ public static boolean isEmpty() { return !scanner.hasNext(); } /** * Returns true if standard input has a next line. * Use this method to know whether the * next call to {@link #readLine()} will succeed. * This method is functionally equivalent to {@link #hasNextChar()}. * * @return {@code true} if standard input has more input (including whitespace); * {@code false} otherwise */ public static boolean hasNextLine() { return scanner.hasNextLine(); } /** * Returns true if standard input has more input (including whitespace). * Use this method to know whether the next call to {@link #readChar()} will succeed. * This method is functionally equivalent to {@link #hasNextLine()}. * * @return {@code true} if standard input has more input (including whitespace); * {@code false} otherwise */ public static boolean hasNextChar() { scanner.useDelimiter(EMPTY_PATTERN); boolean result = scanner.hasNext(); scanner.useDelimiter(WHITESPACE_PATTERN); return result; } /** * Reads and returns the next line, excluding the line separator if present. * * @return the next line, excluding the line separator if present; * {@code null} if no such line */ public static String readLine() { String line; try { line = scanner.nextLine(); } catch (NoSuchElementException e) { line = null; } return line; } /** * Reads and returns the next character. * * @return the next {@code char} * @throws NoSuchElementException if standard input is empty */ public static char readChar() { try { scanner.useDelimiter(EMPTY_PATTERN); String ch = scanner.next(); assert ch.length() == 1 : "Internal (Std)In.readChar() error!" + " Please contact the authors."; scanner.useDelimiter(WHITESPACE_PATTERN); return ch.charAt(0); } catch (NoSuchElementException e) { throw new NoSuchElementException("attempts to read a 'char' value from standard input, " + "but no more tokens are available"); } } /** * Reads and returns the remainder of the input, as a string. * * @return the remainder of the input, as a string * @throws NoSuchElementException if standard input is empty */ public static String readAll() { if (!scanner.hasNextLine()) return ""; String result = scanner.useDelimiter(EVERYTHING_PATTERN).next(); // not that important to reset delimiter, since now scanner is empty scanner.useDelimiter(WHITESPACE_PATTERN); // but let's do it anyway return result; } /** * Reads the next token from standard input and returns it as a {@code String}. * * @return the next {@code String} * @throws NoSuchElementException if standard input is empty */ public static String readString() { try { return scanner.next(); } catch (NoSuchElementException e) { throw new NoSuchElementException("attempts to read a 'String' value from standard input, " + "but no more tokens are available"); } } /** * Reads the next token from standard input, parses it as an integer, and returns the integer. * * @return the next integer on standard input * @throws NoSuchElementException if standard input is empty * @throws InputMismatchException if the next token cannot be parsed as an {@code int} */ public static int readInt() { try { return scanner.nextInt(); } catch (InputMismatchException e) { String token = scanner.next(); throw new InputMismatchException("attempts to read an 'int' value from standard input, " + "but the next token is \"" + token + "\""); } catch (NoSuchElementException e) { throw new NoSuchElementException("attemps to read an 'int' value from standard input, " + "but no more tokens are available"); } } /** * Reads the next token from standard input, parses it as a double, and returns the double. * * @return the next double on standard input * @throws NoSuchElementException if standard input is empty * @throws InputMismatchException if the next token cannot be parsed as a {@code double} */ public static double readDouble() { try { return scanner.nextDouble(); } catch (InputMismatchException e) { String token = scanner.next(); throw new InputMismatchException("attempts to read a 'double' value from standard input, " + "but the next token is \"" + token + "\""); } catch (NoSuchElementException e) { throw new NoSuchElementException("attempts to read a 'double' value from standard input, " + "but no more tokens are available"); } } /** * Reads the next token from standard input, parses it as a float, and returns the float. * * @return the next float on standard input * @throws NoSuchElementException if standard input is empty * @throws InputMismatchException if the next token cannot be parsed as a {@code float} */ public static float readFloat() { try { return scanner.nextFloat(); } catch (InputMismatchException e) { String token = scanner.next(); throw new InputMismatchException("attempts to read a 'float' value from standard input, " + "but the next token is \"" + token + "\""); } catch (NoSuchElementException e) { throw new NoSuchElementException("attempts to read a 'float' value from standard input, " + "but there no more tokens are available"); } } /** * Reads the next token from standard input, parses it as a long integer, and returns the long integer. * * @return the next long integer on standard input * @throws NoSuchElementException if standard input is empty * @throws InputMismatchException if the next token cannot be parsed as a {@code long} */ public static long readLong() { try { return scanner.nextLong(); } catch (InputMismatchException e) { String token = scanner.next(); throw new InputMismatchException("attempts to read a 'long' value from standard input, " + "but the next token is \"" + token + "\""); } catch (NoSuchElementException e) { throw new NoSuchElementException("attempts to read a 'long' value from standard input, " + "but no more tokens are available"); } } /** * Reads the next token from standard input, parses it as a short integer, and returns the short integer. * * @return the next short integer on standard input * @throws NoSuchElementException if standard input is empty * @throws InputMismatchException if the next token cannot be parsed as a {@code short} */ public static short readShort() { try { return scanner.nextShort(); } catch (InputMismatchException e) { String token = scanner.next(); throw new InputMismatchException("attempts to read a 'short' value from standard input, " + "but the next token is \"" + token + "\""); } catch (NoSuchElementException e) { throw new NoSuchElementException("attempts to read a 'short' value from standard input, " + "but no more tokens are available"); } } /** * Reads the next token from standard input, parses it as a byte, and returns the byte. * * @return the next byte on standard input * @throws NoSuchElementException if standard input is empty * @throws InputMismatchException if the next token cannot be parsed as a {@code byte} */ public static byte readByte() { try { return scanner.nextByte(); } catch (InputMismatchException e) { String token = scanner.next(); throw new InputMismatchException("attempts to read a 'byte' value from standard input, " + "but the next token is \"" + token + "\""); } catch (NoSuchElementException e) { throw new NoSuchElementException("attempts to read a 'byte' value from standard input, " + "but no more tokens are available"); } } /** * Reads the next token from standard input, parses it as a boolean, * and returns the boolean. * * @return the next boolean on standard input * @throws NoSuchElementException if standard input is empty * @throws InputMismatchException if the next token cannot be parsed as a {@code boolean}: * {@code true} or {@code 1} for true, and {@code false} or {@code 0} for false, * ignoring case */ public static boolean readBoolean() { try { String token = readString(); if ("true".equalsIgnoreCase(token)) return true; if ("false".equalsIgnoreCase(token)) return false; if ("1".equals(token)) return true; if ("0".equals(token)) return false; throw new InputMismatchException("attempts to read a 'boolean' value from standard input, " + "but the next token is \"" + token + "\""); } catch (NoSuchElementException e) { throw new NoSuchElementException("attempts to read a 'boolean' value from standard input, " + "but no more tokens are available"); } } /** * Reads all remaining tokens from standard input and returns them as an array of strings. * * @return all remaining tokens on standard input, as an array of strings */ public static String[] readAllStrings() { // we could use readAll.trim().split(), but that's not consistent // because trim() uses characters 0x00..0x20 as whitespace String[] tokens = WHITESPACE_PATTERN.split(readAll()); if (tokens.length == 0 || tokens[0].length() > 0) return tokens; // don't include first token if it is leading whitespace String[] decapitokens = new String[tokens.length-1]; for (int i = 0; i < tokens.length - 1; i++) decapitokens[i] = tokens[i+1]; return decapitokens; } /** * Reads all remaining lines from standard input and returns them as an array of strings. * @return all remaining lines on standard input, as an array of strings */ public static String[] readAllLines() { ArrayList lines = new ArrayList(); while (hasNextLine()) { lines.add(readLine()); } return lines.toArray(new String[0]); } /** * Reads all remaining tokens from standard input, parses them as integers, and returns * them as an array of integers. * @return all remaining integers on standard input, as an array * @throws InputMismatchException if any token cannot be parsed as an {@code int} */ public static int[] readAllInts() { String[] fields = readAllStrings(); int[] vals = new int[fields.length]; for (int i = 0; i < fields.length; i++) vals[i] = Integer.parseInt(fields[i]); return vals; } /** * Reads all remaining tokens from standard input, parses them as longs, and returns * them as an array of longs. * @return all remaining longs on standard input, as an array * @throws InputMismatchException if any token cannot be parsed as a {@code long} */ public static long[] readAllLongs() { String[] fields = readAllStrings(); long[] vals = new long[fields.length]; for (int i = 0; i < fields.length; i++) vals[i] = Long.parseLong(fields[i]); return vals; } /** * Reads all remaining tokens from standard input, parses them as doubles, and returns * them as an array of doubles. * @return all remaining doubles on standard input, as an array * @throws InputMismatchException if any token cannot be parsed as a {@code double} */ public static double[] readAllDoubles() { String[] fields = readAllStrings(); double[] vals = new double[fields.length]; for (int i = 0; i < fields.length; i++) vals[i] = Double.parseDouble(fields[i]); return vals; } //// end: section (2 of 2) of code duplicated from In to StdIn // do this once when StdIn is initialized static { resync(); } /** * If StdIn changes, use this to reinitialize the scanner. */ private static void resync() { setScanner(new Scanner(new java.io.BufferedInputStream(System.in), CHARSET_NAME)); } private static void setScanner(Scanner scanner) { StdIn.scanner = scanner; StdIn.scanner.useLocale(LOCALE); } /** * Reads all remaining tokens, parses them as integers, and returns * them as an array of integers. * @return all remaining integers, as an array * @throws InputMismatchException if any token cannot be parsed as an {@code int} * @deprecated Replaced by {@link #readAllInts()}. */ @Deprecated public static int[] readInts() { return readAllInts(); } /** * Reads all remaining tokens, parses them as doubles, and returns * them as an array of doubles. * @return all remaining doubles, as an array * @throws InputMismatchException if any token cannot be parsed as a {@code double} * @deprecated Replaced by {@link #readAllDoubles()}. */ @Deprecated public static double[] readDoubles() { return readAllDoubles(); } /** * Reads all remaining tokens and returns them as an array of strings. * @return all remaining tokens, as an array of strings * @deprecated Replaced by {@link #readAllStrings()}. */ @Deprecated public static String[] readStrings() { return readAllStrings(); } /** * Interactive test of basic functionality. * * @param args the command-line arguments */ public static void main(String[] args) { StdOut.print("Type a string: "); String s = StdIn.readString(); StdOut.println("Your string was: " + s); StdOut.println(); StdOut.print("Type an int: "); int a = StdIn.readInt(); StdOut.println("Your int was: " + a); StdOut.println(); StdOut.print("Type a boolean: "); boolean b = StdIn.readBoolean(); StdOut.println("Your boolean was: " + b); StdOut.println(); StdOut.print("Type a double: "); double c = StdIn.readDouble(); StdOut.println("Your double was: " + c); StdOut.println(); } }