Below is the syntax highlighted version of Goldbach.java
from §1.4 Arrays.
/****************************************************************************** * Compilation: javac Goldbach.java * Execution: java -Xmx900MB -Xms900MB Goldbach n * * Computes all primes less than n and tries to express n as a sum * of two primes. Goldbach's conjecture says that this is always * possible if n is even and greater than 2. When n is odd, these * are called prime pairs. * * Sample execution: * * % java Goldbach 10003292 * 10003292 = 349 + 10002943 * * % java Goldbach 10000001 * 10000001 is not expressible as the sum of two primes * * % java Goldbach 10000021 * 10000021 = 2 + 10000019 * ******************************************************************************/ public class Goldbach { public static void main(String[] args) { int n = Integer.parseInt(args[0]); boolean[] isPrime = new boolean[n]; for (int i = 2; i < n; i++) isPrime[i] = true; // determine primes < n using Sieve of Eratosthenes for (int factor = 2; factor*factor < n; factor++) { if (isPrime[factor]) { for (int j = factor; factor*j < n; j++) isPrime[factor*j] = false; } } // count primes int primes = 0; for (int i = 2; i < n; i++) if (isPrime[i]) primes++; System.out.println("Done tabulating primes."); // store primes in list int[] list = new int[primes]; int count = 0; for (int i = 0; i < n; i++) if (isPrime[i]) list[count++] = i; // check if n can be expressed as sum of two primes int left = 0, right = count-1; while (left <= right) { if (list[left] + list[right] == n) break; else if (list[left] + list[right] < n) left++; else right--; } if (list[left] + list[right] == n) System.out.println(n + " = " + list[left] + " + " + list[right]); else System.out.println(n + " not expressible as sum of two primes"); } }