Below is the syntax highlighted version of Benford.java
from §2.1 Static Methods.
/****************************************************************************** * Compilation: javac Benford.java StdIn.java * Execution: java Benford < data.txt * Data files: https://introcs.cs.princeton.edu/java/data/princeton-files.txt * Reads in a sequence of integers and computes a frequency distribution * of the number of times 1-9 is the leading (leftmost) digit. * * Benford's law predicts that for many real-world data sets: * * digit frequency * ---------------- * 1 30.1 * 2 17.6 * 3 12.5 * 4 9.7 * 5 7.9 * 6 6.7 * 7 5.8 * 8 5.1 * 9 4.6 * * % java Benford < princeton-files.txt * 1: 30.8% * 2: 19.3% * 3: 13.0% * 4: 9.9% * 5: 7.4% * 6: 5.9% * 7: 5.2% * 8: 4.4% * 9: 4.1% * ******************************************************************************/ public class Benford { // return the leading digit of x, assuming x is positive public static int leadingDigit(int x) { while (x >= 10) { x = x / 10; } return x; } public static void main(String[] args) { int[] count = new int[10]; // frequency of leading digit i int n = 0; // number of items read in while (!StdIn.isEmpty()) { int x = StdIn.readInt(); // read in next integer int digit = leadingDigit(x); // compute leading digit count[digit]++; // update frequency n++; } // print out frequency distribution for (int i = 1; i < 10; i++) StdOut.printf("%d: %6.1f%%\n", i, 100.0 * count[i] / n); } }