Below is the syntax highlighted version of ErrorFunction.java
from §2.1 Static Methods.
/****************************************************************************** * Compilation: javac ErrorFunction.java * Execution: java ErrorFunction z * * Implements the Gauss error function. * * erf(z) = 2 / sqrt(pi) * integral(exp(-t*t), t = 0..z) * * * % java ErrorFunction 1.0 * erf(1.0) = 0.8427007877600067 // actual = 0.84270079294971486934 * Phi(1.0) = 0.8413447386043253 // actual = 0.8413447460 * * * % java ErrorFunction -1.0 * erf(-1.0) = -0.8427007877600068 * Phi(-1.0) = 0.15865526139567465 * * % java ErrorFunction 3.0 * erf(3.0) = 0.9999779095015785 // actual = 0.99997790950300141456 * Phi(3.0) = 0.9986501019267444 * * % java ErrorFunction 30 * erf(30.0) = 1.0 * Phi(30.0) = 1.0 * * % java ErrorFunction -30 * erf(-30.0) = -1.0 * Phi(-30.0) = 0.0 * * % java ErrorFunction 1E-20 * erf(1.0E-20) = -3.0000000483809686E-8 // true anser 1.13E-20 * Phi(1.0E-20) = 0.49999998499999976 * * ******************************************************************************/ public class ErrorFunction { // fractional error in math formula less than 1.2 * 10 ^ -7. // although subject to catastrophic cancellation when z in very close to 0 // from Chebyshev fitting formula for erf(z) from Numerical Recipes, 6.2 public static double erf(double z) { double t = 1.0 / (1.0 + 0.5 * Math.abs(z)); // use Horner's method double ans = 1 - t * Math.exp( -z*z - 1.26551223 + t * ( 1.00002368 + t * ( 0.37409196 + t * ( 0.09678418 + t * (-0.18628806 + t * ( 0.27886807 + t * (-1.13520398 + t * ( 1.48851587 + t * (-0.82215223 + t * ( 0.17087277)))))))))); if (z >= 0) return ans; else return -ans; } // fractional error less than x.xx * 10 ^ -4. // Algorithm 26.2.17 in Abromowitz and Stegun, Handbook of Mathematical. public static double erf2(double z) { double t = 1.0 / (1.0 + 0.47047 * Math.abs(z)); double poly = t * (0.3480242 + t * (-0.0958798 + t * (0.7478556))); double ans = 1.0 - poly * Math.exp(-z*z); if (z >= 0) return ans; else return -ans; } // cumulative normal distribution // See Gaussia.java for a better way to compute Phi(z) public static double Phi(double z) { return 0.5 * (1.0 + erf(z / (Math.sqrt(2.0)))); } /*************************************************************************** * Test client ***************************************************************************/ public static void main(String[] args) { double x = Double.parseDouble(args[0]); StdOut.println("erf(" + x + ") = " + ErrorFunction.erf(x)); StdOut.println("erf2(" + x + ") = " + ErrorFunction.erf2(x)); StdOut.println("Phi(" + x + ") = " + ErrorFunction.Phi(x)); StdOut.println(); } }