Below is the syntax highlighted version of Gaussian.java
from §2.1 Static Methods.
/****************************************************************************** * Compilation: javac Gaussian.java * Execution: java Gaussian x mu sigma * * Function to compute the Gaussian pdf (probability density function) * and the Gaussian cdf (cumulative density function) * * % java Gaussian 820 1019 209 * 0.17050966869132111 * * % java Gaussian 1500 1019 209 * 0.9893164837383883 * * % java Gaussian 1500 1025 231 * 0.9801220907365489 * * The approximation is accurate to absolute error less than 8 * 10^(-16). * Reference: Evaluating the Normal Distribution by George Marsaglia. * http://www.jstatsoft.org/v11/a04/paper * ******************************************************************************/ public class Gaussian { // return pdf(x) = standard Gaussian pdf public static double pdf(double x) { return Math.exp(-x*x / 2) / Math.sqrt(2 * Math.PI); } // return pdf(x, mu, sigma) = Gaussian pdf with mean mu and stddev sigma public static double pdf(double x, double mu, double sigma) { return pdf((x - mu) / sigma) / sigma; } // return cdf(z) = standard Gaussian cdf using Taylor approximation public static double cdf(double z) { if (z < -8.0) return 0.0; if (z > 8.0) return 1.0; double sum = 0.0, term = z; for (int i = 3; sum + term != sum; i += 2) { sum = sum + term; term = term * z * z / i; } return 0.5 + sum * pdf(z); } // return cdf(z, mu, sigma) = Gaussian cdf with mean mu and stddev sigma public static double cdf(double z, double mu, double sigma) { return cdf((z - mu) / sigma); } // Compute z such that cdf(z) = y via bisection search public static double inverseCDF(double y) { return inverseCDF(y, 0.00000001, -8, 8); } // bisection search private static double inverseCDF(double y, double delta, double lo, double hi) { double mid = lo + (hi - lo) / 2; if (hi - lo < delta) return mid; if (cdf(mid) > y) return inverseCDF(y, delta, lo, mid); else return inverseCDF(y, delta, mid, hi); } // return phi(x) = standard Gaussian pdf @Deprecated public static double phi(double x) { return pdf(x); } // return phi(x, mu, sigma) = Gaussian pdf with mean mu and stddev sigma @Deprecated public static double phi(double x, double mu, double sigma) { return pdf(x, mu, sigma); } // return Phi(z) = standard Gaussian cdf using Taylor approximation @Deprecated public static double Phi(double z) { return cdf(z); } // return Phi(z, mu, sigma) = Gaussian cdf with mean mu and stddev sigma @Deprecated public static double Phi(double z, double mu, double sigma) { return cdf(z, mu, sigma); } // Compute z such that Phi(z) = y via bisection search @Deprecated public static double PhiInverse(double y) { return inverseCDF(y); } // test client public static void main(String[] args) { double z = Double.parseDouble(args[0]); double mu = Double.parseDouble(args[1]); double sigma = Double.parseDouble(args[2]); StdOut.println(cdf(z, mu, sigma)); double y = cdf(z); StdOut.println(inverseCDF(y)); } }