Below is the syntax highlighted version of Bernoulli.java
from §2.2 Libraries.
/****************************************************************************** * Compilation: javac Bernoulli.java * Execution: java Bernoulli n trials * Dependencies: StdDraw.java StdRandom.java Gaussian.java StdStats.java * * Each experiment consists of flipping n fair coins trials times. * Plots a histogram of the number of times i of the n coins are heads. * * % java Bernoulli 32 1000 * * % java Bernoulli 64 1000 * * % java Bernoulli 128 1000 * ******************************************************************************/ public class Bernoulli { // number of heads when flipping n biased-p coins public static int binomial(int n, double p) { int heads = 0; for (int i = 0; i < n; i++) { if (StdRandom.bernoulli(p)) { heads++; } } return heads; } // number of heads when flipping n fair coins // or call binomial(n, 0.5) public static int binomial(int n) { int heads = 0; for (int i = 0; i < n; i++) { if (StdRandom.bernoulli(0.5)) { heads++; } } return heads; } public static void main(String[] args) { int n = Integer.parseInt(args[0]); // number of coins to flip per trial int trials = Integer.parseInt(args[1]); // number of trials StdDraw.setYscale(0, 0.2); // flip n fair coins, trials times int[] freq = new int[n+1]; for (int t = 0; t < trials; t++) { freq[binomial(n)]++; } // plot normalized values double[] normalized = new double[n+1]; for (int i = 0; i <= n; i++) { normalized[i] = (double) freq[i] / trials; } StdStats.plotBars(normalized); // plot Gaussian approximation double mean = n / 2.0; double stddev = Math.sqrt(n) / 2.0; double[] phi = new double[n+1]; for (int i = 0; i <= n; i++) { phi[i] = Gaussian.pdf(i, mean, stddev); } StdStats.plotLines(phi); } }