Below is the syntax highlighted version of AnimatedHanoi.java
from §2.3 Recursion.
/****************************************************************************** * Compilation: javac AnimatedHanoi.java * Execution: java AnimatedHanoi n * Dependencies: StdDraw.java * * Solves the Towers of Hanoi problem on n discs and displays the * results graphically. * * * % java AnimatedHanoi 6 * ******************************************************************************/ import java.awt.Color; public class AnimatedHanoi { // draw the current state of the Towers of Hanoi game public static void draw(int[] pole) { int n = pole.length - 1; // draw 3 poles StdDraw.clear(); StdDraw.setPenColor(StdDraw.BLACK); StdDraw.setPenRadius(0.002); for (int i = 0; i < 3; i++) StdDraw.line(i, 0, i, n); // draw N discs int[] discs = new int[3]; // discs[p] = # discs on pole p for (int i = n; i >= 1; i--) { Color color = Color.getHSBColor(1.0f * i / n, 0.7f, 0.7f); StdDraw.setPenColor(color); StdDraw.setPenRadius(0.035); // magic constant double size = 0.5 * i / n; int p = pole[i]; StdDraw.line(p-size/2, discs[p], p + size/2, discs[p]); ++discs[p]; } StdDraw.show(); StdDraw.pause(500); } public static void hanoi(int n) { int[] pole = new int[n+1]; // pole[i] = pole (0-2) that disc i is on draw(pole); hanoi(n, 0, 1, 2, pole); } public static void hanoi(int n, int from, int temp, int to, int[] pole) { if (n == 0) return; hanoi(n-1, from, to, temp, pole); StdOut.println("Move disc " + n + " from pole " + from + " to pole " + to); pole[n] = to; draw(pole); hanoi(n-1, temp, from, to, pole); } public static void main(String[] args) { int n = Integer.parseInt(args[0]); // number of discs int WIDTH = 200; // width of largest disc int HEIGHT = 20; // height of each disc // set size of window and sale StdDraw.setCanvasSize(4*WIDTH, (n+3)*HEIGHT); StdDraw.setXscale(-1, 3); StdDraw.setYscale(0, n+3); StdDraw.enableDoubleBuffering(); // solve the Towers of Hanoi with n discs hanoi(n); } }