Below is the syntax highlighted version of Combinations.java
from §2.3 Recursion.
/****************************************************************************** * Compilation: javac Combinations.java * Execution: java Combinations n * * Enumerates all subsets of n elements using recursion. * Uses some String library functions. * * Both functions (comb1 and comb2) print them in alphabetical * order; comb2 does not include the empty subset. * * % java Combinations 3 * * a * ab * abc * ac * b * bc * c * * a * ab * abc * ac * b * bc * c * * Remark: this is, perhaps, easier by counting from 0 to 2^N - 1 by 1 * and looking at the bit representation of the counter. However, this * recursive approach generalizes easily, e.g., if you want to print * out all combinations of size k. * ******************************************************************************/ public class Combinations { // print all subsets of the characters in s public static void comb1(String s) { comb1("", s); } // print all subsets of the remaining elements, with given prefix private static void comb1(String prefix, String s) { if (s.length() > 0) { StdOut.println(prefix + s.charAt(0)); comb1(prefix + s.charAt(0), s.substring(1)); comb1(prefix, s.substring(1)); } } // alternate implementation public static void comb2(String s) { comb2("", s); } private static void comb2(String prefix, String s) { StdOut.println(prefix); for (int i = 0; i < s.length(); i++) comb2(prefix + s.charAt(i), s.substring(i + 1)); } // read in N from command line, and print all subsets among N elements public static void main(String[] args) { int n = Integer.parseInt(args[0]); String alphabet = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"; String elements = alphabet.substring(0, n); // using first implementation comb1(elements); StdOut.println(); // using second implementation comb2(elements); StdOut.println(); } }