Below is the syntax highlighted version of CombinationsK.java
from §2.3 Recursion.
/****************************************************************************** * Compilation: javac CombinationsK.java * Execution: java CombinationsK n k * * Enumerates all subsets of size k on n elements in lexicographic order. * Two different solutions. Uses some String library functions. * * % java CombinationsK 5 3 * abc * abd * abe * acd * ace * ade * bcd * bce * bde * cde * ******************************************************************************/ public class CombinationsK { // print all subsets that take k of the remaining elements, with given prefix public static void comb1(String s, int k) { comb1(s, "", k); } private static void comb1(String s, String prefix, int k) { if (s.length() < k) return; else if (k == 0) StdOut.println(prefix); else { comb1(s.substring(1), prefix + s.charAt(0), k-1); comb1(s.substring(1), prefix, k); } } // print all subsets that take k of the remaining elements, with given prefix public static void comb2(String s, int k) { comb2(s, "", k); } private static void comb2(String s, String prefix, int k) { if (k == 0) StdOut.println(prefix); else { for (int i = 0; i < s.length(); i++) comb2(s.substring(i + 1), prefix + s.charAt(i), k-1); } } // reads in two integer command-line arguments n and k and // print all subsets of size k from n elements public static void main(String[] args) { int n = Integer.parseInt(args[0]); int k = Integer.parseInt(args[1]); String alphabet = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"; String elements = alphabet.substring(0, n); comb1(elements, k); StdOut.println(); comb2(elements, k); } }