Below is the syntax highlighted version of Knapsack.java
from §2.3 Recursion.
/****************************************************************************** * Compilation: javac Knapsack.java * Execution: java Knapsack N W * * Generates an instance of the 0/1 knapsack problem with N items * and maximum weight W and solves it in time and space proportional * to N * W using dynamic programming. * * For testing, the inputs are generated at random with weights between 0 * and W, and profits between 0 and 1000. * * % java Knapsack 6 2000 * item profit weight take * 1 874 580 true * 2 620 1616 false * 3 345 1906 false * 4 369 1942 false * 5 360 50 true * 6 470 294 true * ******************************************************************************/ public class Knapsack { public static void main(String[] args) { int N = Integer.parseInt(args[0]); // number of items int W = Integer.parseInt(args[1]); // maximum weight of knapsack int[] profit = new int[N+1]; int[] weight = new int[N+1]; // generate random instance, items 1..N for (int n = 1; n <= N; n++) { profit[n] = StdRandom.uniformInt(1000); weight[n] = StdRandom.uniformInt(W); } // opt[n][w] = max profit of packing items 1..n with weight limit w // sol[n][w] = does opt solution to pack items 1..n with weight limit w include item n? int[][] opt = new int[N+1][W+1]; boolean[][] sol = new boolean[N+1][W+1]; for (int n = 1; n <= N; n++) { for (int w = 1; w <= W; w++) { // don't take item n int option1 = opt[n-1][w]; // take item n int option2 = Integer.MIN_VALUE; if (weight[n] <= w) option2 = profit[n] + opt[n-1][w-weight[n]]; // select better of two options opt[n][w] = Math.max(option1, option2); sol[n][w] = (option2 > option1); } } // determine which items to take boolean[] take = new boolean[N+1]; for (int n = N, w = W; n > 0; n--) { if (sol[n][w]) { take[n] = true; w = w - weight[n]; } else { take[n] = false; } } // print results StdOut.println("item" + "\t" + "profit" + "\t" + "weight" + "\t" + "take"); for (int n = 1; n <= N; n++) { StdOut.println(n + "\t" + profit[n] + "\t" + weight[n] + "\t" + take[n]); } } }