Below is the syntax highlighted version of Queens2.java
from §2.3 Recursion.
/****************************************************************************** * Compilation: javac Queens2.java * Execution: java Queens2 n * * Solve the n queens problem by enumerating all n! permutations, * pruning off useless branches. Solves n = 30 in a reasonable amount * of time. * * % java Queens2 3 * * % java Queens2 4 * * * Q * * Q * * * * * * * Q * * Q * * * ******************************************************************************/ public class Queens2 { /*************************************************************************** * Prints n-by-n placement of queens in ASCII. ***************************************************************************/ public static void printQueens(int[] a) { int n = a.length; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (a[i] == j) StdOut.print("Q "); else StdOut.print("* "); } StdOut.println(); } StdOut.println(); } /*************************************************************************** * Solve the n queens problem by brute force. ***************************************************************************/ public static void swap(int[] a, int i, int j) { int temp = a[i]; a[i] = a[j]; a[j] = temp; } // try all n! permutations, but prune useless ones public static void enumerate(int[] a, boolean[] diag1, boolean[] diag2, int k) { int n = a.length; // found one, so print out and stop if (k == 0) { printQueens(a); // System.exit(0); } for (int i = 0; i < k; i++) { swap(a, i, k-1); int j = k-1; // if placement of new queen is ok, then enumerate if (!diag1[j + a[j]] && !diag2[n + j - a[j]]) { diag1[j + a[j]] = true; diag2[n + j - a[j]] = true; enumerate(a, diag1, diag2, k-1); diag1[j + a[j]] = false; diag2[n + j - a[j]] = false; } swap(a, i, k-1); } } public static void main(String[] args) { int n = Integer.parseInt(args[0]); int[] a = new int[n]; // a[i] = row of queen in ith column boolean[] diag1 = new boolean[2*n]; // is ith top diagonal occupied? boolean[] diag2 = new boolean[2*n]; // is ith bottom diagonal occupied? for (int i = 0; i < n; i++) a[i] = i; enumerate(a, diag1, diag2, n); } }