Below is the syntax highlighted version of PercolationDirected.java
from §2.4 Case Study: Percolation.
/****************************************************************************** * Compilation: javac PercolationDirected.java * Execution: java PercolationDirected < input.txt * Dependencies: StdArrayIO.java StdDraw.java StdOut.java * Data files: https://introcs.cs.princeton.edu/java/24percolation/test5.txt * https://introcs.cs.princeton.edu/java/24percolation/test8.txt * https://introcs.cs.princeton.edu/java/24percolation/testD.txt * https://introcs.cs.princeton.edu/java/24percolation/testV.txt * https://introcs.cs.princeton.edu/java/24percolation/testT.txt * https://introcs.cs.princeton.edu/java/24percolation/testF.txt * https://introcs.cs.princeton.edu/java/24percolation/testTiny.txt * * % more test5.txt * 5 5 * 0 1 1 0 1 * 0 0 1 1 1 * 1 1 0 1 1 * 1 0 0 0 1 * 0 1 1 1 1 * * % java PercolationDirected < test5.txt * 5 5 * 0 1 1 0 1 * 0 0 1 1 1 * 0 0 0 1 1 * 0 0 0 0 1 * 0 1 1 1 1 * true * * % more testD.txt * 8 8 * 0 0 0 1 1 1 0 1 * 1 1 1 0 0 1 1 1 * 1 0 1 0 0 1 0 0 * 1 0 1 1 1 1 0 1 * 1 0 0 1 0 1 0 0 * 1 1 0 1 0 0 1 0 * 0 1 1 0 0 1 1 1 * 0 0 1 0 0 0 0 0 * * % java PercolationDirected < testD.txt * 8 8 * 0 0 0 1 1 1 0 1 * 0 0 0 0 0 1 1 1 * 0 0 0 0 0 1 0 0 * 0 0 1 1 1 1 0 0 * 0 0 0 1 0 1 0 0 * 0 0 0 1 0 0 0 0 * 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 * false * ******************************************************************************/ public class PercolationDirected { // given an n-by-n matrix of open sites, return an n-by-n matrix // of sites reachable from the top public static boolean[][] flow(boolean[][] isOpen) { int n = isOpen.length; boolean[][] isFull = new boolean[n][n]; for (int j = 0; j < n; j++) { flow(isOpen, isFull, 0, j); } return isFull; } // determine set of full sites using depth first search public static void flow(boolean[][] isOpen, boolean[][] isFull, int i, int j) { int n = isOpen.length; // base cases if (i < 0 || i >= n) return; // invalid row if (j < 0 || j >= n) return; // invalid column if (!isOpen[i][j]) return; // not an open site if (isFull[i][j]) return; // already marked as full // mark i-j as full isFull[i][j] = true; flow(isOpen, isFull, i+1, j); // down flow(isOpen, isFull, i, j+1); // right flow(isOpen, isFull, i, j-1); // left } // does the system percolate? public static boolean percolates(boolean[][] isOpen) { int n = isOpen.length; boolean[][] isFull = flow(isOpen); for (int j = 0; j < n; j++) { if (isFull[n-1][j]) return true; } return false; } // draw the n-by-n boolean matrix to standard draw public static void show(boolean[][] a, boolean which) { int n = a.length; StdDraw.setXscale(-1, n); StdDraw.setYscale(-1, n); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) if (a[i][j] == which) StdDraw.filledSquare(j, n-i-1, 0.5); } // return a random n-by-n boolean matrix, where each entry is // true with probability p public static boolean[][] random(int n, double p) { boolean[][] a = new boolean[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) a[i][j] = StdRandom.bernoulli(p); return a; } // test client public static void main(String[] args) { boolean[][] isOpen = StdArrayIO.readBoolean2D(); StdArrayIO.print(flow(isOpen)); StdOut.println(percolates(isOpen)); } }