Below is the syntax highlighted version of VerticalPercolation.java
from §2.4 Case Study: Percolation.
/****************************************************************************** * Compilation: javac VerticalPercolation.java * Execution: java VerticalPercolation < input.txt * Dependencies: StdArrayIO.java StdOut.java * Data files: https://introcs.cs.princeton.edu/java/24percolation/test5.txt * https://introcs.cs.princeton.edu/java/24percolation/test8.txt * https://introcs.cs.princeton.edu/java/24percolation/testD.txt * https://introcs.cs.princeton.edu/java/24percolation/testV.txt * https://introcs.cs.princeton.edu/java/24percolation/testT.txt * https://introcs.cs.princeton.edu/java/24percolation/testF.txt * https://introcs.cs.princeton.edu/java/24percolation/testTiny.txt * https://introcs.cs.princeton.edu/java/24percolation/testV.txt * * % java VerticalPercolation < test5.txt * 5 5 * 0 1 1 0 1 * 0 0 1 0 1 * 0 0 0 0 1 * 0 0 0 0 1 * 0 0 0 0 1 * true * * % java VerticalPercolation < testD.txt * 8 8 * 0 0 0 1 1 1 0 1 * 0 0 0 0 0 1 0 1 * 0 0 0 0 0 1 0 0 * 0 0 0 0 0 1 0 0 * 0 0 0 0 0 1 0 0 * 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 * false * * % java VerticalPercolation < testV.txt * 8 8 * 0 0 0 1 1 1 0 1 * 0 0 0 0 0 1 0 1 * 0 0 0 0 0 1 0 0 * 0 0 0 0 0 1 0 0 * 0 0 0 0 0 1 0 0 * 0 0 0 0 0 1 0 0 * 0 0 0 0 0 1 0 0 * 0 0 0 0 0 1 0 0 * true * ******************************************************************************/ public class VerticalPercolation { // given an n-by-n matrix of open sites, return an n-by-n matrix // of sites reachable from the top via a vertical path of open sites public static boolean[][] flow(boolean[][] isOpen) { int n = isOpen.length; boolean[][] isFull = new boolean[n][n]; // identify full sites in row 0 for (int j = 0; j < n; j++) { isFull[0][j] = isOpen[0][j]; } // update remaining rows for (int i = 1; i < n; i++) { for (int j = 0; j < n; j++) { isFull[i][j] = isOpen[i][j] && isFull[i-1][j]; } } return isFull; } // does the system percolate? public static boolean percolates(boolean[][] isOpen) { int n = isOpen.length; boolean[][] isFull = flow(isOpen); for (int j = 0; j < n; j++) { if (isFull[n-1][j]) return true; } return false; } // draw the n-by-n boolean matrix to standard draw public static void show(boolean[][] a, boolean which) { int n = a.length; StdDraw.setXscale(-1, n); StdDraw.setYscale(-1, n); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) if (a[i][j] == which) StdDraw.filledSquare(j, n-i-1, 0.5); } // return a random n-by-n boolean matrix, where each entry is // true with probability p public static boolean[][] random(int n, double p) { boolean[][] a = new boolean[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) a[i][j] = StdRandom.bernoulli(p); return a; } // test client public static void main(String[] args) { boolean[][] isOpen = StdArrayIO.readBoolean2D(); StdArrayIO.print(flow(isOpen)); StdOut.println(percolates(isOpen)); } }