Below is the syntax highlighted version of BigRational.java
from §3.2 Creating Data Types.
/****************************************************************************** * Compilation: javac BigRational.java * Execution: java BigRational * * ADT for nonnegative Rational numbers. Uses Java's BigInteger * library for arbitrary precision. Does not support negative * integers or zero. * * Invariant: all Rational objects are in reduced form (except * possibly while modifying). * ******************************************************************************/ import java.math.BigInteger; public class BigRational { private BigInteger num; // the numerator private BigInteger den; // the denominator // create and initialize a new Rational object public BigRational(int numerator, int denominator) { // BigInteger constructor takes a string, not an int num = new BigInteger(numerator + ""); den = new BigInteger(denominator + ""); BigInteger g = num.gcd(den); num = num.divide(g); den = den.divide(g); } // create and initialize a new Rational object public BigRational(BigInteger numerator, BigInteger denominator) { BigInteger g = numerator.gcd(denominator); num = numerator.divide(g); den = denominator.divide(g); } // return string representation of (this) public String toString() { if (den.equals(BigInteger.ONE)) return num + ""; else return num + "/" + den; } // return a * b public BigRational times(BigRational b) { BigRational a = this; BigInteger numerator = a.num.multiply(b.num); BigInteger denominator = a.den.multiply(b.den); return new BigRational(numerator, denominator); } // return a + b public BigRational plus(BigRational b) { BigRational a = this; BigInteger numerator = a.num.multiply(b.den).add(a.den.multiply(b.num)); BigInteger denominator = a.den.multiply(b.den); return new BigRational(numerator, denominator); } // return 1 / a public BigRational reciprocal() { return new BigRational(den, num); } // return a / b public BigRational divides(BigRational b) { BigRational a = this; return a.times(b.reciprocal()); } /*************************************************************************** * Computes rational approximation to e using Taylor series * * e = 1 + 1/1 + 1/2! + 1/3! + ... + 1/n! * ***************************************************************************/ public static void main(String[] args) { int n = Integer.parseInt(args[0]); BigRational r = new BigRational(1, 1); BigRational factorial = new BigRational(1, 1); for (int i = 1; i <= n; i++) { factorial = factorial.times(new BigRational(i, 1)); r = r.plus(factorial.reciprocal()); StdOut.println(r); } } }