Below is the syntax highlighted version of ColorJulia.java
from §3.2 Creating Data Types.
/****************************************************************************** * Compilation: javac ColorJulia.java * Execution: java ColorJulia a b < file.txt * Dependencies: Picture.java * * Plots the Julia for the complex point c = a + ib. * * The set of points in the Julia set is connected if and only if * c is in the Mandelbrot set. * * % java ColorJulia -0.75 0.1 < mandel.txt * * % java ColorJulia -1.25 0 < mandel.txt * * % java ColorJulia 0.1 0.7 < mandel.txt * ******************************************************************************/ import java.awt.Color; public class ColorJulia { // return number of iterations to check z is in the Julia set of c static int julia(Complex c, Complex z, int maximumIterations) { for (int t = 0; t < maximumIterations; t++) { if (z.abs() > 2.0) return t; z = z.times(z).plus(c); } return maximumIterations - 1; } public static void main(String[] args) { double real = Double.parseDouble(args[0]); // a double imag = Double.parseDouble(args[1]); // b Complex c = new Complex(real, imag); // c = a + ib double xmin = -2.0; double ymin = -2.0; double width = 4.0; double height = 4.0; int n = 512; int ITERS = 256; // read in color map Color[] colors = new Color[ITERS]; for (int t = 0; t < ITERS; t++) { int r = StdIn.readInt(); int g = StdIn.readInt(); int b = StdIn.readInt(); colors[t] = new Color(r, g, b); } Picture picture = new Picture(n, n); for (int col = 0; col < n; col++) { for (int row = 0; row < n; row++) { double x = xmin + col * width / n; double y = ymin + row * height / n; Complex z = new Complex(x, y); int t = julia(c, z, ITERS); picture.set(col, n - 1 - row, colors[t]); } } picture.show(); } }