Below is the syntax highlighted version of ColorMandelbrot.java
from §3.2 Creating Data Types.
/****************************************************************************** * Compilation: javac ColorMandelbrot.java * Execution: java Mandelbrot xmid ymid size < colors.txt * Dependencies: Picture.java StdIn.java * * Plots the Mandelbrot set in color. * * % java ColorMandelbrot -.5 0 2 < mandel.txt * * // increase dwell * % java ColorMandelbrot -0.7615134027775 0.0794865972225 0.0032285925920 < mandel.txt * ******************************************************************************/ import java.awt.Color; public class ColorMandelbrot { // return number of iterations to check if c = a + ib is in Mandelbrot set public static int mand(Complex z0, int d) { Complex z = z0; for (int t = 0; t < d; t++) { if (z.abs() > 2.0) return t; z = z.times(z).plus(z0); } return d; } public static void main(String[] args) { double xc = Double.parseDouble(args[0]); double yc = Double.parseDouble(args[1]); double size = Double.parseDouble(args[2]); int n = 512; int ITERS = 256; // read in color map Color[] colors = new Color[ITERS]; for (int t = 0; t < ITERS; t++) { int r = StdIn.readInt(); int g = StdIn.readInt(); int b = StdIn.readInt(); colors[t] = new Color(r, g, b); } // compute Mandelbrot set Picture picture = new Picture(n, n); for (int col = 0; col < n; col++) { for (int row = 0; row < n; row++) { double x = xc - size/2 + size*col/n; double y = yc - size/2 + size*row/n; Complex z0 = new Complex(x, y); int t = mand(z0, ITERS - 1); picture.set(col, n-1-row, colors[t]); } } picture.show(); } }