Below is the syntax highlighted version of Complex.java
from §3.3 Designing Data Types.
/****************************************************************************** * Compilation: javac Complex.java * Execution: java Complex * * ADT for complex numbers using polar representation. * * % java Complex * a = 5.0 + 6.0i * b = -2.0000000000000004 + 2.9999999999999996i * c = -27.999999999999996 + 2.9999999999999876i * ******************************************************************************/ public final class Complex { private double r; // distance private double theta; // angle // constructor that takes in rectangular coordinates public Complex(double re, double im) { r = Math.sqrt(re*re + im*im); theta = Math.atan2(im, re); } // accessor methods public double re() { return r * Math.cos(theta); } public double im() { return r * Math.sin(theta); } // return a string representation of this complex number public String toString() { return re() + " + " + im() + "i"; } // return this Complex number plus b public Complex plus(Complex b) { Complex a = this; double re = a.r * Math.cos(a.theta) + b.r * Math.cos(b.theta); double im = a.r * Math.sin(a.theta) + b.r * Math.sin(b.theta); return new Complex(re, im); } // return this Complex number times b public Complex times(Complex b) { Complex a = this; Complex c = new Complex(0, 0); c.r = a.r * b.r; // can't make r and theta final c.theta = a.theta + b.theta; // because of these two statements return c; } // return the magnitude / absolute value of this complex number public double abs() { return r; } // sample client for testing - calculates roots of unity public static void main(String[] args) { Complex a = new Complex(5.0, 6.0); StdOut.println("a = " + a); Complex b = new Complex(-2.0, 3.0); StdOut.println("b = " + b); Complex c = b.times(a); StdOut.println("c = " + c); } }