Below is the syntax highlighted version of RectangleRule.java
from §3.3 Designing Data Types.
/****************************************************************************** * Compilation: javac RectangleRule.java * Execution: java RectangleRule a b * * Numerically integrate the function f in the interval (a, b) using * the rectangle rule. * * % java RectangleRule -3 3 * 0.997300243823125 // true answer = 0.9973002040... * * Observation: this says that 99.7% of time a standard normal random * variable is within 3 standard deviation of its mean. * * Caveat: this is not the best way to integrate the normal density * function. See what happens if you make b very big. * * % java RectangleRuleRule 0 100000 * 0.0 // true answer = 1/2 * * ******************************************************************************/ public class RectangleRule { /********************************************************************** * Integrate f from a to b using the rectangled rule. * Increase n for more precision. **********************************************************************/ public static double integrate(Function f, double a, double b, int n) { double delta = (b - a) / n; // step size double sum = 0.0; // area for (int i = 0; i < n; i++) { sum += delta * f.evaluate(a + delta*(i + 0.5)); } return sum; } // sample client program public static void main(String[] args) { double a = Double.parseDouble(args[0]); double b = Double.parseDouble(args[1]); Function f = new GaussianPDF(); StdOut.println(integrate(f, a, b, 1000)); } }