Below is the syntax highlighted version of Evaluate.java
from §4.3 Stacks and Queues.
/****************************************************************************** * Compilation: javac Evaluate.java * Execution: java Evaluate * Dependencies: Stack.java * * Evaluates (fully parenthesized) arithmetic expressions using * Dijkstra's two-stack algorithm. * * % java Evaluate * ( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) ) * 101.0 * * % java Evaulate * ( ( 1 + sqrt ( 5 ) ) / 2.0 ) * 1.618033988749895 * * * * Remarkably, Dijkstra's algorithm computes the same * answer if we put each operator *after* its two operands * instead of *between* them. * * % java Evaluate * ( 1 ( ( 2 3 + ) ( 4 5 * ) * ) + ) * 101.0 * * Moreover, in such expressions, all parentheses are redundant! * Removing them yields an expression known as a postfix expression. * 1 2 3 + 4 5 * * + * * ******************************************************************************/ public class Evaluate { public static void main(String[] args) { Stack<String> ops = new Stack<String>(); Stack<Double> vals = new Stack<Double>(); while (!StdIn.isEmpty()) { String s = StdIn.readString(); if (s.equals("(")) ; else if (s.equals("+")) ops.push(s); else if (s.equals("-")) ops.push(s); else if (s.equals("*")) ops.push(s); else if (s.equals("/")) ops.push(s); else if (s.equals("sqrt")) ops.push(s); else if (s.equals(")")) { String op = ops.pop(); double v = vals.pop(); if (op.equals("+")) v = vals.pop() + v; else if (op.equals("-")) v = vals.pop() - v; else if (op.equals("*")) v = vals.pop() * v; else if (op.equals("/")) v = vals.pop() / v; else if (op.equals("sqrt")) v = Math.sqrt(v); vals.push(v); } else vals.push(Double.parseDouble(s)); } StdOut.println(vals.pop()); } }