Below is the syntax highlighted version of ArbitraryPrecisionSqrt.java
from §9.2 Floating Point.
/****************************************************************************** * Compilation: javac ArbitraryPrecisionSqrt.java * Execution: java ArbitraryPrecisionSqrt x n * * Computer the square of an integer with n digits of precision, * using Newton's method. * * % java ArbitraryPrecisionSqrt 2 50 * 1.4142135623730950488016887242096980785696718753769 * * % java ArbitraryPrecisionSqrt 100 50 * 10.000000000000000000000000000000000000000000000000 * * % java ArbitraryPrecisionSqrt 5 1000000 * 2.2360679774997896964091736...026774457574830645269 * ******************************************************************************/ import java.math.BigInteger; import java.math.BigDecimal; import java.math.RoundingMode; import java.math.MathContext; public class ArbitraryPrecisionSqrt { private static final BigDecimal TWO = new BigDecimal(2); // Reference: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots public static BigDecimal sqrt(int x, int n) { if (x <= 0) throw new IllegalArgumentException("x must be a positive integer: " + x); if (n <= 0) throw new IllegalArgumentException("n must be a positive integer: " + n); // initial estimate (find smallest power of 2 >= sqrt(x)) int initial = 1; while (initial*initial < x) { initial *= 2; } // 1 + lg(n) iterations of Newton's method // (1 iteration needed to get 1 decimal digit of precision; each subsequent // iteration at least doubles the number of significant digits) BigDecimal t = new BigDecimal(initial); BigDecimal c = new BigDecimal(x); for (int precision = 1; precision <= 2*n; precision *= 2) { MathContext context = new MathContext(1 + 2*precision, RoundingMode.HALF_EVEN); t = c.divide(t, context).add(t).divide(TWO, context); } return t.round(new MathContext(n, RoundingMode.HALF_EVEN)); } public static void main(String[] args) { int x = Integer.parseInt(args[0]); int n = Integer.parseInt(args[1]); BigDecimal result = sqrt(x, n); StdOut.println(result); } }