Below is the syntax highlighted version of Chebyshev.java
from §9.2 Floating Point.
/****************************************************************************** * Compilation: javac Chebyshev.java * Execution: java Chebyshev N * Dependencies: Polynomial.java * * Print out the first N Chebyshev polynomials. * * H(0) = 1 * H(1) = x * H(n) = 2x * T(n-1) - T(n-2) * * * % java Chebyshev 1 * 1x^0 * * % java Chebyshev 2 * 1x^0 * 1x^1 * * % java Chebyshev 10 * 1x^0 * 1x^1 * 2x^2 - 1x^0 * 4x^3 - 3x^1 * 8x^4 - 8x^2 + 1x^0 * 16x^5 - 20x^3 + 5x^1 * 32x^6 - 48x^4 + 18x^2 - 1x^0 * 64x^7 - 112x^5 + 56x^3 - 7x^1 * 128x^8 - 256x^6 + 160x^4 - 32x^2 + 1x^0 * 256x^9 - 576x^7 + 432x^5 - 120x^3 + 9x^1 * ******************************************************************************/ public class Chebyshev { public static void main(String[] args) { int N = Integer.parseInt(args[0]); Polynomial[] T = new Polynomial[Math.max(2, N)]; // T[i] = ith Chebyshev polynomial T[0] = new Polynomial(1, 0); // 1 T[1] = new Polynomial(1, 1); // x Polynomial twox = new Polynomial(2, 1); // 2x // compute Chebyshev polynomials for (int n = 2; n < N; n++) { Polynomial temp1 = twox.times(T[n-1]); T[n] = temp1.minus(T[n-2]); } // print results for (int n = 0; n < N; n++) StdOut.println(T[n]); } }