Below is the syntax highlighted version of Fibonacci.java
from §9.2 Floating Point.
/****************************************************************************** * Compilation: javac Fibonacci.java * Execution: java Fibonacci N * * Compute Fibonacci number using Dijkstra's recurrence: * F(2N-1) = F(N-1)^2 + F(N)^2 * F(2N) = (2 F(N-1) + F(N)) F(N) * * Reference: http://www.cs.utexas.edu/users/EWD/ewd06xx/EWD654.PDF * Reference: http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html * ******************************************************************************/ import java.util.HashMap; import java.math.BigInteger; public class Fibonacci { private static HashMap<BigInteger, BigInteger> cache = new HashMap<BigInteger, BigInteger>(); private static BigInteger TWO = new BigInteger("2"); private static BigInteger ONE = BigInteger.ONE; private static BigInteger ZERO = BigInteger.ZERO; public static BigInteger fibonacci(BigInteger n) { if (n.equals(ZERO)) return ZERO; if (n.equals(ONE)) return ONE; if (cache.containsKey(n)) return cache.get(n); // odd if (n.testBit(0)) { BigInteger n2 = n.shiftRight(1); BigInteger n3 = n2.add(ONE); BigInteger result = fibonacci(n2).multiply(fibonacci(n2)).add(fibonacci(n3).multiply(fibonacci(n3))); cache.put(n, result); return result; } // even else { BigInteger n2 = n.shiftRight(1); BigInteger n3 = n2.subtract(ONE); BigInteger result = fibonacci(n2).multiply(fibonacci(n2).add(fibonacci(n3).add(fibonacci(n3)))); cache.put(n, result); return result; } } public static void main(String[] args) { BigInteger N = new BigInteger(args[0]); StdOut.println(fibonacci(N)); } }