Below is the syntax highlighted version of Hermite.java
from §9.2 Floating Point.
/****************************************************************************** * Compilation: javac Hermite.java * Execution: java Hermite N * Dependencies: Polynomial.java * * Print out the first N Hermite polynomials. * * H(0) = 1 * H(1) = 2x * H(n) = 2x * H(n-1) - 2(n-1) * H(n-2) * * * % java Hermite 1 * 1x^0 * * % java Hermite 2 * 1x^0 * 2x^1 * * % java Hermite 10 * 1x^0 * 2x^1 * 4x^2 - 2x^0 * 8x^3 - 12x^1 * 16x^4 - 48x^2 + 12x^0 * 32x^5 - 160x^3 + 120x^1 * 64x^6 - 480x^4 + 720x^2 - 120x^0 * 128x^7 - 1344x^5 + 3360x^3 - 1680x^1 * 256x^8 - 3584x^6 + 13440x^4 - 13440x^2 + 1680x^0 * 512x^9 - 9216x^7 + 48384x^5 - 80640x^3 + 30240x^1 * ******************************************************************************/ public class Hermite { public static void main(String[] args) { int N = Integer.parseInt(args[0]); Polynomial[] H = new Polynomial[Math.max(2, N)]; H[0] = new Polynomial(1, 0); // 1 H[1] = new Polynomial(2, 1); // 2x // compute Hermite polynomials for (int n = 2; n < N; n++) { Polynomial temp1 = H[1].times(H[n-1]); Polynomial temp2 = new Polynomial(2 * (n-1), 0); // 2(n-1) Polynomial temp3 = temp2.times(H[n-2]); H[n] = temp1.minus(temp3); } // print results for (int n = 0; n < N; n++) StdOut.println(H[n]); } }