Below is the syntax highlighted version of RationalComplex.java
from §9.2 Floating Point.
/****************************************************************************** * Compilation: javac RationalComplex.java * Execution: java RationalComplex * * A complex number with arbitrary precision rational components. * ******************************************************************************/ public class RationalComplex { private final BigRational re; private final BigRational im; // create a new object with the given real and imaginary parts public RationalComplex(BigRational real, BigRational imag) { re = real; im = imag; } // return a string representation of the invoking Complex object public String toString() { if (im.equals(BigRational.ZERO)) return re + ""; if (re.equals(BigRational.ZERO)) return im + "i"; if (im.isNegative()) return re + " - " + (im.negate()) + "i"; return re + " + " + im + "i"; } // return a new Complex object whose value is (this + b) public RationalComplex plus(RationalComplex b) { RationalComplex a = this; BigRational real = a.re.plus(b.re); BigRational imag = a.im.plus(b.im); return new RationalComplex(real, imag); } // return a new Complex object whose value is (this - b) public RationalComplex minus(RationalComplex b) { RationalComplex a = this; BigRational real = a.re.minus(b.re); BigRational imag = a.im.minus(b.im); return new RationalComplex(real, imag); } // return a new Complex object whose value is (this * b) public RationalComplex times(RationalComplex b) { RationalComplex a = this; BigRational real = a.re.times(b.re).minus(a.im.times(b.im)); BigRational imag = a.re.times(b.im).plus(a.im.times(b.re)); return new RationalComplex(real, imag); } // square of 2 norm public BigRational normSquared() { return re.times(re).plus(im.times(im)); } public static void main(String[] args) { BigRational a1 = new BigRational(5, 1); BigRational a2 = new BigRational(6, 1); BigRational b1 = new BigRational(-1, 3); BigRational b2 = new BigRational(2, 7); RationalComplex a = new RationalComplex(a1, a2); RationalComplex b = new RationalComplex(b1, b2); StdOut.println("a = " + a); StdOut.println("b = " + b); StdOut.println("b + a = " + b.plus(a)); StdOut.println("a - b = " + a.minus(b)); StdOut.println("a * b = " + a.times(b)); StdOut.println("b * a = " + b.times(a)); } }