Below is the syntax highlighted version of Torus.java
from §9.3 Symbolic Methods.
/****************************************************************************** * Compilation: javac Torus.java * Execution: java Torus N * * Estimate the center-of-mass of the intersection of a torus and two * planes using Monte Carlo integration. We assume the density = 1.0. * * Reference: Numerical Recipes in FORTRAN, p. 223 * ******************************************************************************/ public class Torus { public static void main(String[] args) { int N = Integer.parseInt(args[0]); // number of samples double sum = 0.0; double sumx = 0.0; double sumy = 0.0; double sumz = 0.0; double sum2 = 0.0; double sum2x = 0.0; double sum2y = 0.0; double sum2z = 0.0; double V = 3.0 * 7.0 * 2.0; // volume of enclosing region for (int i = 0; i < N; i++) { double x = 1.0 + 3.0 * Math.random(); double y = -3.0 + 7.0 * Math.random(); double z = -1.0 + 2.0 * Math.random(); // is (x, y, z) in the torus? if (z*z + Math.pow((Math.sqrt(x*x + y*y) - 3), 2) <= 1) { sum += 1.0; sumx += x; sumy += y; sumz += z; sum2 += 1.0; sum2x += x * x; sum2y += y * y; sum2z += z * z; } } // print results double mass = V * sum / N; double massx = V * sumx / N; double massy = V * sumy / N; double massz = V * sumz / N; double error = V * Math.sqrt((sum2 /N - (sum /N)*(sum /N)) / N); double errorx = V * Math.sqrt((sum2x/N - (sumx/N)*(sumx/N)) / N); double errory = V * Math.sqrt((sum2y/N - (sumy/N)*(sumy/N)) / N); double errorz = V * Math.sqrt((sum2z/N - (sumz/N)*(sumz/N)) / N); StdOut.println("Mass = " + mass + " +- " + error); StdOut.println("Moment x = " + massx + " +- " + errorx); StdOut.println("Moment y = " + massy + " +- " + errory); StdOut.println("Moment z = " + massz + " +- " + errorz); StdOut.println("Center of mass = (" + (massx/mass) + ", " + (massy/mass) + ", " + (massz/mass) + ")"); } }