Below is the syntax highlighted version of Lorenz.java
from §9.4 Numerical Integration.
/****************************************************************************** * Compilation: javac Lorenz.java * Execution: java Lorenz * Dependencies: StdDraw.java * * Plot phase space (x vs. z) of Lorenz attractor with one set of * initial conditions and another set of slightly perturbed intial * conditions. Uses Euler method. * ******************************************************************************/ import java.awt.Color; public class Lorenz { private double x, y, z; private Color color; public Lorenz(double x, double y, double z, Color color) { this.x = x; this.y = y; this.z = z; this.color = color; } public void update(double dt) { double xnew = x + dx(x, y, z) * dt; double ynew = y + dy(x, y, z) * dt; double znew = z + dz(x, y, z) * dt; x = xnew; y = ynew; z = znew; } public void draw() { StdDraw.setPenColor(color); StdDraw.point(x, z); } public static double dx(double x, double y, double z) { return -10*(x - y); } public static double dy(double x, double y, double z) { return -x*z + 28*x - y; } public static double dz(double x, double y, double z) { return x*y - 8*z/3; } public static void main(String[] args) { StdDraw.clear(StdDraw.LIGHT_GRAY); StdDraw.setXscale(-25, 25); StdDraw.setYscale( 0, 50); StdDraw.enableDoubleBuffering(); Lorenz lorenz1 = new Lorenz(0.0, 20.00, 25.0, StdDraw.BLUE); Lorenz lorenz2 = new Lorenz(0.0, 20.01, 25.0, StdDraw.MAGENTA); // Use Euler's method to numerically solve ODE double dt = 0.001; for (int i = 0; i < 50000; i++) { lorenz1.update(dt); lorenz2.update(dt); lorenz1.draw(); lorenz2.draw(); StdDraw.show(); StdDraw.pause(10); } } }