Below is the syntax highlighted version of MarkovChain.java
from §9.5 Numerical Solutions to Differential Equations.
/****************************************************************************** * Compilation: javac MarkovChain.java * Execution: java MarkovChain * * Computes the stationary distribution using several different * methods. * * Data taken from Glass and Hall (1949) who distinguish 7 states * in their social mobility study: * * 1. Professional, high administrative * 2. Managerial * 3. Inspectional, supervisory, non-manual high grade * 4. Non-manual low grade * 5. Skilled manual * 6. Semi-skilled manual * 7. Unskilled manual * * See also Happy Harry, 2.39. * ******************************************************************************/ import Jama.Matrix; import Jama.EigenvalueDecomposition; public class MarkovChain { public static void main(String[] args) { // the state transition matrix int N = 7; double[][] transition = { { 0.386, 0.147, 0.202, 0.062, 0.140, 0.047, 0.016}, { 0.107, 0.267, 0.227, 0.120, 0.207, 0.052, 0.020}, { 0.035, 0.101, 0.188, 0.191, 0.357, 0.067, 0.061}, { 0.021, 0.039, 0.112, 0.212, 0.431, 0.124, 0.061}, { 0.009, 0.024, 0.075, 0.123, 0.473, 0.171, 0.125}, { 0.000, 0.103, 0.041, 0.088, 0.301, 0.312, 0.155}, { 0.000, 0.008, 0.036, 0.083, 0.364, 0.235, 0.274} }; // compute using 50 iterations of power method Matrix A = new Matrix(transition); A = A.transpose(); Matrix x = new Matrix(N, 1, 1.0 / N); // initial guess for eigenvector for (int i = 0; i < 50; i++) { x = A.times(x); x = x.times(1.0 / x.norm1()); // rescale } StdOut.print("Stationary distribution using power method:"); x.print(9, 6); // compute by finding eigenvector corresponding to eigenvalue = 1 EigenvalueDecomposition eig = new EigenvalueDecomposition(A); Matrix V = eig.getV(); double[] real = eig.getRealEigenvalues(); for (int i = 0; i < N; i++) { if (Math.abs(real[i] - 1.0) < 1E-6) { x = V.getMatrix(0, N-1, i, i); x = x.times(1.0 / x.norm1()); StdOut.print("Stationary distribution using eigenvector:"); x.print(9, 6); } } // If ergordic, stationary distribution = unique solution to Ax = x // up to scaling factor. // We solve (A - I) x = 0, but replace row 0 with constraint that // says the sum of x coordinates equals one Matrix B = A.minus(Matrix.identity(N, N)); for (int j = 0; j < N; j++) B.set(0, j, 1.0); Matrix b = new Matrix(N, 1); b.set(0, 0, 1.0); x = B.solve(b); StdOut.print("Stationary distribution by solving linear system of equations:"); x.print(9, 6); } }