Below is the syntax highlighted version of Bernoulli.java
from §9.6 Numerical Linear Algebra.
/****************************************************************************** * Compilation: javac Bernoulli.java * Execution: java Bernoulli N * * Print out the first N Bernoulli numbers. * * % java Bernoulli 20 * 1 * -1/2 * 1/6 * 0 * -1/30 * 0 * 1/42 * 0 * -1/30 * 0 * 5/66 * 0 * -691/2730 * 0 * 7/6 * 0 * -3617/510 * 0 * 43867/798 * 0 * ******************************************************************************/ import java.math.BigInteger; public class Bernoulli { public static void main(String[] args) { int N = Integer.parseInt(args[0]); // precompute binomial coefficients BigInteger[][] binomial = new BigInteger[N+1][N+1]; for (int n = 1; n <= N; n++) binomial[0][n] = BigInteger.ZERO; for (int n = 0; n <= N; n++) binomial[n][0] = BigInteger.ONE; // bottom-up dynamic programming for (int n = 1; n <= N; n++) for (int k = 1; k <= N; k++) binomial[n][k] = binomial[n-1][k-1].add(binomial[n-1][k]); // now compute Bernoulli numbers BigRational[] bernoulli = new BigRational[N+1]; bernoulli[0] = new BigRational(1, 1); bernoulli[1] = new BigRational(-1, 2); for (int k = 2; k < N; k++) { bernoulli[k] = new BigRational(0, 1); for (int i = 0; i < k; i++) { BigRational coef = new BigRational(binomial[k + 1][k + 1 - i], BigInteger.ONE); bernoulli[k] = bernoulli[k].minus(coef.times(bernoulli[i])); } bernoulli[k] = bernoulli[k].divides(new BigRational(k+1, 1)); } // print out the first N Bernoulli numbers for (int i = 0; i < N; i++) StdOut.println(bernoulli[i]); } }