Below is the syntax highlighted version of Discrete.java
from §9.8 Data Analysis.
/****************************************************************************** * Compilation: javac Discrete.java * Execution: java Discrete N * * Implementation of algorithm for sampling from a discrete * probability N-vector X[1], X[2], ..., X[N]. * Runs nn O(1) worst case time per sample, using one integer * array and one double array of size N for storage. * Preprocessing consumes O(N) time and temporarily uses one * additional integer array of size N for bookkeeping. * * This code is a Java version of Warren D. Smith's WDSsampler.c * * This method was originally developed by Walker and improved * by Kronmal and Peterson (1979). * ******************************************************************************/ public class Discrete { private double[] Y; private int[] A; private int N; // Walker's sampling algorithm // choose i between 1 and N uniformly at random // return i with prob Y[i]; otherwise return i public int random() { // i = random uniform integer from { 1, 2, ..., N } int i = 1 + (int) (N * Math.random()); double r = Math.random(); if (r > Y[i]) i = A[i]; return i; } public Discrete(double[] X) { N = X.length - 2; Y = new double[N+2]; for (int i = 1; i <= N; i++) Y[i] = X[i]; A = new int[N+2]; int[] B = new int[N+2]; // for bookkeeping for(int i = 1; i <= N; i++) { A[i] = B[i] = i; // initial destins = stay there Y[i] = Y[i] * N; // scale probability vector } // sentinels B[0] = 0; B[N+1] = N+1; Y[0] = 0.0; Y[N+1] = 2.0; int i = 0; int j = N + 1; while(true) { do{ i++; } while(Y[B[i]] < 1.0); // find i so X[B[i]] needs more do{ j--; } while(Y[B[j]] >= 1.0); // find j so X[B[j]] wants less if(i >= j) break; int k = B[i]; B[i] = B[j]; B[j] = k; // swap B[i] and B[j] } i = j; j++; while(i > 0) { while(Y[B[j]] <= 1.0) { j++; } // find j so X[B[j]] needs more if(j > N) break; Y[B[j]] -= 1.0 - Y[B[i]]; // B[i] will donate to B[j] to fix up A[B[i]] = B[j]; if(Y[B[j]] < 1.0) { // X[B[j]] now wants less so readjust ordering int k = B[i]; B[i] = B[j]; B[j] = k; // swap B[j] and B[i] j++; } else { i--; } } } public static void main(String[] args) { int N = Integer.parseInt(args[0]); double[] X = { 0, .1, .4, .12, .38, 0 }; int[] hist = new int[N+2]; Discrete d = new Discrete(X); for (int i = 0; i < N; i++) hist[d.random()]++; for (int i = 1; i <= X.length - 2; i++) StdOut.println(i + ": " + X[i] + " " + (1.0 * hist[i] / N)); } }