Below is the syntax highlighted version of Ising.java
from §9.8 Data Analysis.
/****************************************************************************** * Compilation: javac Ising.java * Execution: java Ising N kT * * Create an N-by-N grid of sites. Each site has spin "up" (+1) * or "down" (-1). * * % java Ising N 2.26918 // critical temperature * ******************************************************************************/ import java.awt.Color; public class Ising { private int N; // N-by-N grid of sites private double J = 1.0; // strength of spin-spin interaction (feromagentic when J is positive) private double kT; // temperature (say between 1 and 4) private boolean[][] spin; // up (true) or down (false) // N-by-N grid, kT = temperature, p = prob of up spin public Ising(int N, double kT, double p) { this.N = N; this.kT = kT; this.spin = new boolean[N][N]; // initialize at random for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) spin[i][j] = (Math.random() < p); } // total average magnetization (between -1 and 1) public double magnetization() { int M = 0; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (spin[i][j]) M++; else M--; } } return 1.0 * M / (N * N); } // total energy of site (i, j), using periodic boundary conditions // assumes 0 <= i, j < N private double energy(int i, int j) { double E = 0.0; if (spin[i][j] == spin[(i+1)%N][j]) E++; else E--; if (spin[i][j] == spin[i][(j+1)%N]) E++; else E--; if (spin[i][j] == spin[(i-1+N)%N][j]) E++; else E--; if (spin[i][j] == spin[i][(j-1+N)%N]) E++; else E--; return -J * E; } // total energy, using periodic boundary conditions public double energy() { double E = 0.0; for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) E += 0.5 * energy(i, j); // divide by two to mitigate double-counting return E; } // one Monte Carlo step public void step(int i, int j) { double deltaE = -2 * energy(i, j); // flip if energy decreases or get lucky if ((deltaE <= 0) || (Math.random() <= Math.exp(-deltaE / kT))) spin[i][j] = !spin[i][j]; } // one Monte Carlo phase - N^2 steps public void phase() { for (int steps = 0; steps < N*N; steps++) { int i = (int) (Math.random() * N); int j = (int) (Math.random() * N); step(i, j); } } // plot it public void draw() { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (spin[i][j]) StdDraw.setPenColor(StdDraw.WHITE); else StdDraw.setPenColor(StdDraw.BLUE); StdDraw.filledSquare(i + 0.5, j + 0.5, .5); } } // draw lines StdDraw.setPenColor(StdDraw.BLACK); for (int i = 0; i < N; i++) { StdDraw.line(i, 0, i, N); StdDraw.line(0, i, N, i); } } // string representation public String toString() { String NEWLINE = System.getProperty("line.separator"); String s = ""; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (spin[i][j]) s += "< "; else s += "> "; } s += NEWLINE; } return s; } public static void main(String[] args) { int N = Integer.parseInt(args[0]); // N-by-N lattice double kT = Double.parseDouble(args[1]); // temperature Ising ising = new Ising(N, kT, 0.5); // set scale and turn on animation mode StdDraw.setXscale(0, N); StdDraw.setYscale(0, N); StdDraw.enableDoubleBuffering(); for (int t = 0; true; t++) { ising.phase(); ising.draw(); StdDraw.show(); StdDraw.pause(50); } } }