W.D.Smith typeset

21:57 18 Apr 2002

Sampling

How to sample from a probability
distribution

Warren D. Smith*
wds@research.NJ.NEC.COM

April 18, 2002

Abstract —

This brief note explains how to sample a probability N-
vector in O(1) time per sample, with the aid of a O(N)-
word data structure buildable in O(N) steps. The algo-
rithm is highly practical; we give pseudocode based on
actual working code.

Keywords — Sampling. Linear time algorithm. Data structure.

A fundamental programming task is sampling from an ex-
plicitly given probability distribution on N events, which we
shall imagine is represented by an N-vector! X. Surprisingly,
the best method for doing managed to escape previous notice.
What makes this even more surprising, is that the key idea
was invented in 1977 by A.Walker [2], and then was presented
in Knuth’s textbook [1]?, but both Walker and Knuth (al-
though Knuth improved upon Walker’s original conception)
failed to notice the optimal result, our theorem 1.

function WalkerSample(real 17, positive integer NV, ff)
1: positive integer ¢; real r;

i < 1+ [N -randjg)]; r < randjg);

if r > Y; then
14 Ai;

end if

return ¢.

Figure 1. Walker’s sampling algorithm.

Theorem 1. (Complexity of sampling) Let X be a prob-
ability N-vector. Then on a RAM with a generator of ran-
dom wvariates uniform in [0,1) there is an algorithm to pro-
duce samples i € {1,..., N} with probability X;, in O(1) steps
(worst-case) per sampling. The sampling algorithm relies on
a data structure consisting of one integer array A and one real
array }7, each having N elements. This data structure may be
built (starting from)?) in O(N) steps with the temporary use
of one additional N -element integer array for bookkeeping.

Proof. The O(1)-time sampling algorithm WalkerSample is
due to A.Walker [2]. Its intuitive idea is: we sample from a
uniform distribution (all X; = N 1), which may be thought
of as a histogram with NV bars all of equal height. We then

*NECI, 4 Independence Way Princeton NJ 08540 USA

IHere we assume every coordinate of the vector is nonzero, or equiv-
alently redefine N so that it is the number of nonzero coordinates in the
vector.

2The second edition of Knuth [1], section 3.4.1 (pages 120-121) and
exercise 7.

DocNumberl7 April 2002

wish to correct this to get the actually-desired distribution
X. That is accomplished by dividing the ith histogram bar
into two pieces, one of which is labeled “stay here at i” and
the other of which is labeled “go to j = A; instead.” By
selecting the heights of the two sub-bars (and the destinations
j) correctly, we may always get X exactly correct after only
1 such correction step.
procedure BuildSampler(real X, natural N, 4, E)

1: assert X;>O0foralli=1,...,N,and N > 1;

2: natural j, k;

3: forj=1,2,...,N do

4: Aj + j; Bj « j; >initial destinations (stay there)
5 Xj« N-Xj; >initial (scaled) bar heights
6: end for

7: By + 05 X < 0.0; > sentinels
8 Bny1 ¢ N+ 1; Xny1 ¢ 2.03

9: k<055 < N+1;

10: loop

11: repeat >find k& so By’s budget too small
12: k+k+1;

13: until X[B;] > 1.0

14: repeat

15: j—J—1

16: until X[B]] <1.0

17: exitwhen £ > j;

18: swap Bj > Bj;

19: end loop

20: assert B is now (and will remain) ordered so overfunded
histogram bars first, underfunded ones last;

21: b+ j+1;

22: while j > 0 do > Bj initially overfunded

23: while X[By] < 1.0 do > get next underfunded bar By,

24: k+k+1;

25: end while

26: exitwhen k > N; >done with all adjustments

2. X[By] + X[Bi] + X[B;] —1.0; >adjust bar heights

28: A[Bj] < Bu; >and destinations

29: if X[Bi] < 1.0 then

>find j so B;’s budget too large

30: swap Bj ¢ By; k< k+1;
31: else

32: j—J—1

33: end if

34: end while.

Figure 2. O(N)-time algorithm to build Walker’s data struc-
ture (based on actual working C code). Probability N-vector
X is overwritten by Y on output and A is created. Xo, XN41
and By, ny+1 are used for temporary storage.

This existence claim is made clear by the O(N)-step con-
struction algorithm BuildSampler. (Walker’s original build-
algorithm had required order N? steps.) Its operation is
largely explained by the comments in the code. The idea
is that there are two subsets of histogram bars: those which
are below average and those which are above average. Unless
the distribution is exactly uniform (in which case sampling is
a triviality) both of these subsets have cardinality> 1. We
find two histogram bars, one from each set, and make the
bar whose desired probability is below average donate an ap-
propriate amount of its probability budget (initially N 1) to
the other, so that its probability budget now agrees with its

0. 0.0

W.D.Smith typeset 21:57 18 Apr 2002 Sampling

desired probability; this bar may now be eliminated from all
further consideration. The bar that accepted the donation
now has its budget readjusted (and may switch sets). We
continue this process until all bars are eliminated. The 2 sets
(and the third set, of eliminated bars) are conveniently kept
in parts of a partitioned array.

Because it is simpler — and because ultimately this is needed
anyway to make the output routine interface with a random
number generator on [0,1) — we work with all bar heights
scaled up by a factor of V. It is easiest to think about the
algorithm as manipulating two real N-vectors, one for the de-
sired probability distribution X , and the other for the current
“budget,” or approximation. But if such an algorithm is writ-
ten down, you will soon see that it is possible to simplify it
to make it have only one real N-vector, which on input is the
desired probability distribution X and which is converted in
place to the output Y. The fact that, each such step, the
counter k increments or j decrements (and once k > N or
j < 0 the procedure terminates), makes the proof that the
runtime is O(N) trivial. O

Working C code for all this is available at
http://www.neci.nj.nec.com/homepages/wds/WDSsampler.c.

References

[1] D.E.Knuth: Seminumerical algorithms, second edition, Addison-
Wesley-Longman 1999.

[2] Alastair J. Walker: An Efficient Method for Generating Dis-
crete Random Variables with General Distributions, ACM Trans.
Mathematical Software 3,3 (Sept 1977) 253-256.

DocNumberl7 April 2002 2 0.0.0

