Below is the syntax highlighted version of ExtendedEuclid.java
from §5.6 Cryptography.
/****************************************************************************** * Compilation: javac ExtendedEuclid.java * Execution: java ExtendedEuclid p q * * Reads two positive command-line arguments p and q and compute the greatest * common divisor of p and q using the extended Euclid's algorithm. * Also prints out integers a and b such that a(p) + b(q) = gcd(p, q). * * Sample execution: * * % java ExtendedEuclid 36163 21199 * gcd(36163, 21199) = 1247 * -7(36163) + 12(21199) = 1247 * * % java ExtendedEuclid 36163 1058 * gcd(36163, 1058) = 1 * 493(36163) + -16851(1058) = 1 * * ******************************************************************************/ public class ExtendedEuclid { // return array [d, a, b] such that d = gcd(p, q), ap + bq = d static int[] gcd(int p, int q) { if (q == 0) return new int[] { p, 1, 0 }; int[] vals = gcd(q, p % q); int d = vals[0]; int a = vals[2]; int b = vals[1] - (p / q) * vals[2]; return new int[] { d, a, b }; } public static void main(String[] args) { int p = Integer.parseInt(args[0]); int q = Integer.parseInt(args[1]); if (p <= 0 || q <= 0) throw new IllegalArgumentException("p and q must be positive integers"); int vals[] = gcd(p, q); StdOut.println("gcd(" + p + ", " + q + ") = " + vals[0]); StdOut.println(vals[1] + "(" + p + ") + " + vals[2] + "(" + q + ") = " + vals[0]); } }