Below is the syntax highlighted version of Hilbert3D.java
from § Standard Draw 3D.
/****************************************************************************** * Hilbert3D.java * Hayk Martirosyan * --------------------- * Draws a 3-Dimensional Hilbert curve, colored by the distance along * the curve. The fractal depth can be specified as an argument or * changed with the '+' and '-' keys. The algorithm is adapted from * Thomas Diewald's Processing sketch. * * Keywords: Fractals, Coloring, Keystrokes ******************************************************************************/ import java.awt.Color; import java.util.Arrays; import java.util.LinkedList; import java.util.List; public class Hilbert3D { public static void main(String[] args) { // Sets the starting recursive depth int depth = 2; if (args.length != 0) depth = Integer.parseInt(args[0]); // Sets the physical width of the cube double width = 0.5; StdDraw3D.setScale(-width * 1.7, width * 1.7); // Draws the specified Hilbert curve draw(width, depth); // Show loop, changes the recursive depth with key presses while (true) { if (StdDraw3D.hasNextKeyTyped()) { char c = StdDraw3D.nextKeyTyped(); if ((c == '=') || (c == '+')) if (depth < 5) draw(width, ++depth); if ((c == '_') || (c == '-')) if (depth > 1) draw(width, --depth); } StdDraw3D.show(20); } } /** Calculates and draws a Hilbert curve with the given width and recursive depth. */ private static void draw(double width, int depth) { StdDraw3D.clear(); List<StdDraw3D.Vector3D> vecs = hilbert3D(width, depth); double[] x = new double[vecs.size()]; double[] y = new double[vecs.size()]; double[] z = new double[vecs.size()]; Color[] colors = new Color[vecs.size()]; for (int i = 0; i < vecs.size(); i++) { StdDraw3D.Vector3D r = vecs.get(i); x[i] = r.x; y[i] = r.y; z[i] = r.z; colors[i] = Color.getHSBColor((float)i/((float)vecs.size()), 1, 1); } StdDraw3D.setPenRadius(2); double radius = 0.02 * width; // Draws Hilbert curve as unshaded lines //StdDraw3D.lines(x, y, z, colors); // Draws the Hilbert curve as shaded cylindrical tubes StdDraw3D.tubes(x, y, z, radius, colors); // Draws the help text StdDraw3D.setPenColor(StdDraw3D.WHITE); String help = "Press '+' or '-' to change fractal depth. Current depth = [" + depth + "]"; StdDraw3D.overlayText(0, -1.5 * width, help); // Draws the bordering cube of the Hilbert curve StdDraw3D.setPenRadius(0.1); StdDraw3D.setPenColor(StdDraw3D.WHITE, 20); StdDraw3D.cube(0, 0, 0, width); } /** Wrapper method that begins the Hilbert3D recursive process. */ private static List<StdDraw3D.Vector3D> hilbert3D(double width, int depth) { return hilbert3D(new StdDraw3D.Vector3D(), width, depth, 0, 1, 2, 3, 4, 5, 6, 7); } /** Recursive algorithm for constructing a set of vertices for the Hilbert curve. */ private static List<StdDraw3D.Vector3D> hilbert3D (StdDraw3D.Vector3D center, double width, int depth, int v0, int v1, int v2, int v3, int v4 ,int v5, int v6, int v7) { // Creates the eight possible vertices of a gray code. StdDraw3D.Vector3D[] vecs = new StdDraw3D.Vector3D[] { new StdDraw3D.Vector3D(center.x - width/2, center.y + width/2, center.z - width/2), new StdDraw3D.Vector3D(center.x - width/2, center.y + width/2, center.z + width/2), new StdDraw3D.Vector3D(center.x - width/2, center.y - width/2, center.z + width/2), new StdDraw3D.Vector3D(center.x - width/2, center.y - width/2, center.z - width/2), new StdDraw3D.Vector3D(center.x + width/2, center.y - width/2, center.z - width/2), new StdDraw3D.Vector3D(center.x + width/2, center.y - width/2, center.z + width/2), new StdDraw3D.Vector3D(center.x + width/2, center.y + width/2, center.z + width/2), new StdDraw3D.Vector3D(center.x + width/2, center.y + width/2, center.z - width/2) }; // Arranges the gray code by the specified arguments. StdDraw3D.Vector3D[] gray = new StdDraw3D.Vector3D[] { vecs[v0], vecs[v1], vecs[v2], vecs[v3], vecs[v4], vecs[v5], vecs[v6], vecs[v7] }; if (depth <= 1) return Arrays.asList(gray); // Constructs the curve by concatenating vertices from recursive calls. List<StdDraw3D.Vector3D> verts = new LinkedList<StdDraw3D.Vector3D>(); verts.addAll(hilbert3D(gray[0], width/2, depth - 1, v0, v3, v4, v7, v6, v5, v2, v1)); verts.addAll(hilbert3D(gray[1], width/2, depth - 1, v0, v7, v6, v1, v2, v5, v4, v3)); verts.addAll(hilbert3D(gray[2], width/2, depth - 1, v0, v7, v6, v1, v2, v5, v4, v3)); verts.addAll(hilbert3D(gray[3], width/2, depth - 1, v2, v3, v0, v1, v6, v7, v4, v5)); verts.addAll(hilbert3D(gray[4], width/2, depth - 1, v2, v3, v0, v1, v6, v7, v4, v5)); verts.addAll(hilbert3D(gray[5], width/2, depth - 1, v4, v3, v2, v5, v6, v1, v0, v7)); verts.addAll(hilbert3D(gray[6], width/2, depth - 1, v4, v3, v2, v5, v6, v1, v0, v7)); verts.addAll(hilbert3D(gray[7], width/2, depth - 1, v6, v5, v2, v1, v0, v3, v4, v7)); return verts; } }