
Standard Draw 3D
Complete Reference Manual
Hayk Martirosyan

Introduction

Standard Draw 3D is a Java library with the express goal of making it simple to create three-

dimensional models, simulations, and games. If you have not used StdDraw3D before, make sure to

go through the basic tutorial before coming here.

This document is the official reference manual for Standard Draw 3D. Listed below is every method

in the library, categorized by functionality. Most of the library is in the form of static methods, but

there are also nested classes that are crucial to the way StdDraw3D works.

Table of Contents

Each section of the table of contents is hyperlinked to the corresponding section of the manual.

Static Methods

General Settings
è Canvas Size
è Scale
è Perspective
è Mesh Control
è Info Display
è Anti-Aliasing

Pen Settings
è Pen Color
è Pen Radius
è Pen Font

Background
è Solid Color
è Image
è Spherical Panorama

Basic 3D Shapes
è Sphere
è Cube
è Box

Printed by Mathematica for Students

è Cone
è Cylinder
è Ellipsoid

Advanced 3D Shapes
è 3D Text
è Tubes
è External Model

Display and Animation
è Showing
è Clearing

Static Camera Placement
è Camera Position and Orientation
è Camera Direction

Interactive Navigation
è Mode Descriptions
è Setting the Camera Mode
è Orbit Center

Points, Lines, and Surfaces
è Points
è Lines
è Polygons
è Triangles

Saving and Loading
è Image File
è 3D Scene

Lights
è Light Utilities
è Ambient Light
è Point Light
è Directional Light
è Fog

Sounds
è Sound Utilities
è Ambient Sound
è Point Sound

Mouse and Keyboard
è Mouse Buttons
è Mouse Position
è Key Pressed
è Key Stack

2D Overlay
è Circle

2 | Standard Draw 3D Reference

Printed by Mathematica for Students

è Square
è Rectangle
è Ellipse
è Pixel
è Point
è Line
è Arc
è Polygon
è Text
è Picture

Random Generators
è Color
è Vector Direction

Shape Class

Static Shape Manipulation
è Combine
è Copy

Position
è Move Absolute
è Move Relative
è Set Position

Orientation
è Rotate Absolute
è Rotate Relative
è Set Orientation
è Rotate about Axis
è Look At
è Set Direction

Size

Color

Matching

Hiding

Camera Class

Getting the Camera Object

Methods from Shape Class

Additional Methods
è Pair
è Rotate FPS

Standard Draw 3D Reference | 3

Printed by Mathematica for Students

Light Class

Methods from Shape Class

Power of a Point Light

Vector3D Class

Fields

Constructors

Methods
è Addition
è Subtraction
è Multiplication
è Magnitude
è Direction
è Distance
è Dot Product
è Cross Product
è Angle
è Projection
è Reflection
è To String
è Draw

4 | Standard Draw 3D Reference

Printed by Mathematica for Students

STATIC METHODS

These static functions are called by prefixing the method name with “StdDraw3D.”. For example,

to draw a sphere, call StdDraw3D.sphere(x, y, z, r). Nested classes of StdDraw3D are documented

below this section.

General Settings

Global settings of StdDraw3D are included here, and control various aspects of the drawing window

and rendering process. Canvas size and scale should be defined at the start of each project.

Canvas Size

Sets the drawing window size to (w, h) pixels. Can also set the drawing window to fullscreen, which

makes it as large as possible to fit the displaying monitor.

All Arguments

Type Name Description

double w width
double h height

Methods
Return Type Name Arguments

void setCanvasSize Hw, hL
void fullscreen HL

Scale

The “scale” of the drawing window is important to the way StdDraw3D works. In general, it is the

coordinate range which you are likely to be drawing in (for all three dimensions). In your drawing

window, is by default placed such that you can see the working volume specified by the setScale()

function. Of course you can move the camera as desired, but navigation speed is also calibrated

based on the scale, so it is useful to set a good scale. Calling setScale() without arguments reverts to

the default scale of (0, 1).

Arguments

Type Name Description

double minimum the minimum x, y, and z coordinate of your working volume
double maximum the maximum x, y, and z coordinate of your working volume

Methods
Return Type Name Arguments

void setScale Hminimum, maximumL
void setScale HL

Standard Draw 3D Reference | 5

Printed by Mathematica for Students

Perspective

The perspective of a 3D scene is the way it is projected onto a 2D computer monitor to create the

appearance of three-dimensional depth. Objects that are closer appear larger in real life, and this is

how they are drawn in StdDraw3D. This is called perspective projection, and the amount to which

closer objects appear larger is proportional to the field of view. You can specify the field of view

with the setPerspectiveProjection() function, or revert to the default of 0.9. A large field of view

looks like a fisheye, while a small field of view is like looking through a telescope. Reasonable

values of fov range from 0.5 to 3.0. Zero perspective can be set with setParallelProjection(), and is

how all CAD programs display 3D objects.

Arguments

Type Name Description

double fov field of view of perspective projection

Methods
Return Type Name Arguments

void setPerspectiveProjection HfovL
void setPerspectiveProjection HL
void setParallelProjection HL

Mesh Control

Sets the number of trianglular divisions of curved shapes like spheres and cylinders. The default is

100 divisons. Decrease this number to increase performance. Can also get the current value.

Arguments

Type Name Description

int N number of triangular divisions

Methods
Return Type Name Arguments

void setNumDivisions HNL
int getNumDivisions HL

Info Display

Toggles the information display in the upper-left corner.

Arguments

Type Name Description

boolean enabled state of the info display

Methods
Return Type Name Arguments

void setInfoDisplay HenabledL
Anti-Aliasing

Toggles simple anti-aliasing. Anti-aliasing makes graphics look much smoother, but is very resource

heavy. It is good for saving images that look professional. The default is off. Currently not

supported for OS-X, and only works with some PCs. Can also get the current state.

6 | Standard Draw 3D Reference

Printed by Mathematica for Students

Toggles simple anti-aliasing. Anti-aliasing makes graphics look much smoother, but is very resource

heavy. It is good for saving images that look professional. The default is off. Currently not

supported for OS-X, and only works with some PCs. Can also get the current state.

Arguments

Type Name Description

boolean enabled state of anti - aliasing

Methods
Return Type Name Arguments

void setAntiAliasing HenabledL
boolean getAntiAliasing HL

Pen Settings

These functions change the propreties of the drawing pen, which influences the properties of things

you draw. For example, a drawn sphere will be the pen color, a drawn line will have the pen radius,

and drawn text will have the pen font.

Pen Color

Sets the pen to the given color. Can specify either a color, a color and a transparency, RGB

components, or nothing (reverts to the default pen color). Can also get the current pen color.

All Arguments

Type Name Description

Color col desired color
int alpha optional transparency of color H0 - 255L
int r red component of an RGB color
int g green component of an RGB color
int b blue component of an RGB color

Methods
Return Type Name Arguments

void setPenColor HcolL
void setPenColor Hcol, alphaL
void setPenColor Hr, g, bL
void setPenColor HL
Color getPenColor HL

Pen Radius

Sets the pen stroke to the given radius, or reverts to the default of 0.002 if no arguments are given.

Can also get the current radius.

Arguments

Type Name Description

double r desired pen radius

Standard Draw 3D Reference | 7

Printed by Mathematica for Students

Methods
Return Type Name Arguments

void setPenRadius HrL
void setPenRadius HL
float getPenRadius HL

Pen Font

Sets the pen to the given Font object, or reverts to the default if no arguments are given. Can also

get the current font.

All Arguments

Type Name Description

Font f desired pen font

Methods
Return Type Name Arguments

void setFont HfL
void setFont HL
Font getFont HL

Background

The background of the drawing window is by black by default, but can be easily changed as needed.

There are three options for specifying a background: you can set a solid color, a background image,

or an image wrapped around a 3D background sphere.

Solid Color

Sets the background to a solid color.

Arguments

Type Name Description

Color color desired color

Methods
Return Type Name Arguments

void setBackground HcolorL
Image

Sets the background to a specified image, which is scaled to fit the window.

Arguments

Type Name Description

String imageURL filename or URL of desired background image

Methods
Return Type Name Arguments

8 | Standard Draw 3D Reference

Printed by Mathematica for Students

void setBackground HimageURLL
Spherical Panorama

Sets the background to a specified image, wrapped around as a spherical skybox.

Arguments

Type Name Description

String imageURL filename or URL of desired background image

Methods
Return Type Name Arguments

void setBackgroundSphere HimageURLL

Basic 3D Shapes

There are six basic three-dimensional shapes in StdDraw3D: spheres, cubes, boxes, cones,

cylinders, and ellipsoids. Each primitive shape has a set of five drawing functions, depending on

whether you want to specify rotation, texture, or wireframe properties. Sphere and cube are specific

cases of ellipsoid and box, but are included for convenience. Every drawing function returns a

Shape object, which can be moved, rotated, and scaled dynamically using the methods of the Shape

class.

Sphere

Draws a sphere at (x, y, z) with radius r. Can specify Euler rotation angles (xA, yA, zA). Can be

solid, wireframe, or textured.

All Arguments

Type Name Description

double x x - coordinate of the center
double y y - coordinate of the center
double z z - coordinate of the center
double r radius
double xA x component of XYZ Euler angle rotation
double yA y component of XYZ Euler angle rotation
double zA z component of XYZ Euler angle rotation
String imageURL filename or URL of wraparound texture

Return Value

Returns the drawn Shape object, which can be further manipulated.

Solid
Return Type Name Arguments

Shape sphere Hx, y, z, rL
Shape sphere Hx, y, z, r, xA, yA, zAL
Wireframe

Standard Draw 3D Reference | 9

Printed by Mathematica for Students

Return Type Name Arguments

Shape wireSphere Hx, y, z, rL
Shape wireSphere Hx, y, z, r, xA, yA, zAL
Textured
Return Type Name Arguments

Shape sphere Hx, y, z, r, xA, yA, zA, imageURLL
Cube

Draws a cube at (x, y, z) with radius r. Can specify Euler rotation angles (xA, yA, zA). Can be

solid, wireframe, or textured.

All Arguments

Type Name Description

double x x - coordinate of the center
double y y - coordinate of the center
double z z - coordinate of the center
double r radius Hhalf of side lengthL
double xA x component of XYZ Euler angle rotation
double yA y component of XYZ Euler angle rotation
double zA z component of XYZ Euler angle rotation
String imageURL filename or URL of wraparound texture

Return Value

Returns the drawn Shape object, which can be further manipulated.

Solid
Return Type Name Arguments

Shape cube Hx, y, z, rL
Shape cube Hx, y, z, r, xA, yA, zAL
Wireframe
Return Type Name Arguments

Shape wireCube Hx, y, z, rL
Shape wireCube Hx, y, z, r, xA, yA, zAL
Textured
Return Type Name Arguments

Shape cube Hx, y, z, r, xA, yA, zA, imageURLL
Box

Draws a box at (x, y, z) with dimensions (w, h, d). Can specify Euler rotation angles (xA, yA, zA).

Can be solid, wireframe, or textured.

All Arguments

Type Name Description

double x x - coordinate of the center
double y y - coordinate of the center

10 | Standard Draw 3D Reference

Printed by Mathematica for Students

double z z - coordinate of the center
double w width
double h height
double d depth
double xA x component of XYZ Euler angle rotation
double yA y component of XYZ Euler angle rotation
double zA z component of XYZ Euler angle rotation
String imageURL filename or URL of wraparound texture

Return Value

Returns the drawn Shape object, which can be further manipulated.

Solid
Return Type Name Arguments

Shape box Hx, y, z, w, h, dL
Shape box Hx, y, z, w, h, d, xA, yA, zAL
Wireframe
Return Type Name Arguments

Shape wireBox Hx, y, z, w, h, dL
Shape wireBox Hx, y, z, w, h, d, xA, yA, zAL
Textured
Return Type Name Arguments

Shape box Hx, y, z, w, h, d, xA, yA, zA, imageURLL
Cone

Draws a cone at (x,y,z) with radius r and height h. Can specify Euler rotation angles (xA, yA, zA).

Can be solid, wireframe, or textured.

All Arguments

Type Name Description

double x x - coordinate of the center
double y y - coordinate of the center
double z z - coordinate of the center
double r radius
double h height
double xA x component of XYZ Euler angle rotation
double yA y component of XYZ Euler angle rotation
double zA z component of XYZ Euler angle rotation
String imageURL filename or URL of wraparound texture

Return Value

Returns the drawn Shape object, which can be further manipulated.

Solid
Return Type Name Arguments

Shape cone Hx, y, z, r, hL
Shape cone Hx, y, z, r, h, xA, yA, zAL

Standard Draw 3D Reference | 11

Printed by Mathematica for Students

Wireframe
Return Type Name Arguments

Shape wireCone Hx, y, z, r, hL
Shape wireCone Hx, y, z, r, h, xA, yA, zAL
Textured
Return Type Name Arguments

Shape cone Hx, y, z, r, h, xA, yA, zA, imageURLL
Cylinder

Draws a cylinder at (x,y,z) with radius r and height h. Can specify Euler rotation angles (xA, yA,

zA). Can be solid, wireframe, or textured.

All Arguments

Type Name Description

double x x - coordinate of the center
double y y - coordinate of the center
double z z - coordinate of the center
double r radius
double h height
double xA x component of XYZ Euler angle rotation
double yA y component of XYZ Euler angle rotation
double zA z component of XYZ Euler angle rotation
String imageURL filename or URL of wraparound texture

Return Value

Returns the drawn Shape object, which can be further manipulated.

Solid
Return Type Name Arguments

Shape cylinder Hx, y, z, r, hL
Shape cylinder Hx, y, z, r, h, xA, yA, zAL
Wireframe
Return Type Name Arguments

Shape wireCylinder Hx, y, z, r, hL
Shape wireCylinder Hx, y, z, r, h, xA, yA, zAL
Textured
Return Type Name Arguments

Shape cylinder Hx, y, z, r, h, xA, yA, zA, imageURLL
Ellipsoid

Draws an ellipsoid at (x, y, z) with dimensions (w, h, d). Can specify Euler rotation angles (xA, yA,

zA). Can be solid, wireframe, or textured.

All Arguments

Type Name Description

double x x - coordinate of the center

12 | Standard Draw 3D Reference

Printed by Mathematica for Students

double y y - coordinate of the center
double z z - coordinate of the center
double w width
double h height
double d depth
double xA x component of XYZ Euler angle rotation
double yA y component of XYZ Euler angle rotation
double zA z component of XYZ Euler angle rotation
String imageURL filename or URL of wraparound texture

Return Value

Returns the drawn Shape object, which can be further manipulated.

Solid
Return Type Name Arguments

Shape ellipsoid Hx, y, z, w, h, dL
Shape ellipsoid Hx, y, z, w, h, d, xA, yA, zAL
Wireframe
Return Type Name Arguments

Shape wireEllipsoid Hx, y, z, w, h, dL
Shape wireEllipsoid Hx, y, z, w, h, d, xA, yA, zAL
Textured
Return Type Name Arguments

Shape ellipsoid Hx, y, z, w, h, d, xA, yA, zA, imageURLL

Advanced 3D Shapes

These more complicated 3D objects are useful in many cases. Every drawing function returns a

Shape object, which can be moved, rotated, and scaled dynamically using the methods of the Shape

class.

3D Text

Draws 3D text of the given string at (x, y, z) with the pen font. Can specify Euler rotation angles

(xA, yA, zA). Uses the pen font, color, and transparency.

Arguments

Type Name Description

double x x - coordinate of the center
double y y - coordinate of the center
double z z - coordinate of the center
String text the text to be shown
double xA x component of XYZ Euler angle rotation
double yA y component of XYZ Euler angle rotation
double zA z component of XYZ Euler angle rotation

Standard Draw 3D Reference | 13

Printed by Mathematica for Students

Return Value

Returns the drawn Shape object, which can be further manipulated.

Methods
Return Type Name Arguments

Shape text3D Hx, y, z, textL
Shape text3D Hx, y, z, text, xA, yA, zAL

Tubes

Draws a solid 3D cylindrical tube or a set of tubes with the given start and end coordinates and

radius. Drawing a set of tubes is not much more efficient than drawing individual tubes, but will

compact code. Can specify a set of colors for the set of tubes.

All Arguments

Type Name Description

double x1 x - coordinate of the start point
double y1 y - coordinate of the start point
double z1 z - coordinate of the start point
double x2 x - coordinate of the end point
double y2 y - coordinate of the end point
double z2 z - coordinate of the end point
double@D x set of x - coordinates of the tube vertices
double@D y set of y - coordinates of the tube vertices
double@D z set of z - coordinates of the tube vertices
double r radius of the tube
Color@D colors set of colors that correspond to the set of tubes

Return Value

Returns the drawn Shape object, which can be further manipulated.

Single Tube
Return Type Name Arguments

Shape tube Hx1, y1, z1, x2, y2, z2, rL
Set of Tubes
Return Type Name Arguments

Shape tubes Hx, y, z, rL
Shape tubes Hx, y, z, r, colorsL

External Model

You can easily import .OBJ (preferred) or .PLY models into your scene as Shape objects. It takes

some time to create a mesh for larger models with millions of triangles. Colors and textures of an

OBJ file can be imported by including the .mtl material template library. Can also import the model

as a Shape with a single color (the pen color), and change the color using the Shape class. Imported

OBJ models can be automatically scaled to have an average radius of 1, or keep their original size

(default).

Note: The Java loader used to import OBJ files is based on old OBJ standards and often doesn’t

work properly for textures and newer commands in the OBJ file.

14 | Standard Draw 3D Reference

Printed by Mathematica for Students

Note: The Java loader used to import OBJ files is based on old OBJ standards and often doesn’t

work properly for textures and newer commands in the OBJ file.

Arguments

Type Name Description

String filename filename of the model to import
boolean resize resizes the model if true

Return Value

Returns the drawn Shape object, which can be further manipulated.

Methods
Return Type Name Arguments

Shape model HfilenameL
Shape model Hfilename, resizeL
Shape coloredModel HfilenameL
Shape coloredModel Hfilename, resizeL

Display and Animation

The basic tools needed to display and animate a 3D scene are these functions for clearing or

showing objects in the drawing window. If you are drawing a single scene without moving objects,

just call finished() once after you are done drawing. If you are animating, call show() to display

each frame with the desired framerate and clear() to clear the drawing window when desired. You

can also clear just the 3D scene or just the 2D overlay, to enable independence between the two.

Showing

Show functions render everything to the drawing window, then pause for the given number of

milliseconds. If no argument is provided, renders to the screen but does not pause. Methods are also

provided to show just the 3D scene or to show just the 2D overlay. finished() is equivalent to

show(infinity).

Arguments

Type Name Description

int time pauses for this many milliseconds after displaying

Methods
Return Type Name Arguments

void finished HL
void show HtimeL
void show HL
void show3D HtimeL
void show3D HL
void showOverlay HtimeL
void showOverlay HL

Standard Draw 3D Reference | 15

Printed by Mathematica for Students

Clearing

Clears the drawing window upon the next call of show. Methods are also provided to clear just the

3D scene or to clear just the 2D overlay.

Arguments

Type Name Description

Color color if provided, sets as the background color after clearing

Methods
Return Type Name Arguments

void clear HcolorL
void clear HL
void clear3D HL
void clearOverlay HL

Static Camera Placement

The simplest way to programmatically place the camera where you want is to use these static

camera methods. For more advanced camera control, learn how to use and manipulate the Camera

object.

Camera Position and Orientation

Sets the camera position and orientation. Orientation is represented by XYZ Euler rotation angles.

These numbers correspond to those shown in the info display on the upper-left corner of the drawing

window. Can specify scalar or vector input. Can also get the current position and orientation.

All Arguments

Type Name Description

double x x - coordinate of camera position
double y y - coordinate of camera position
double z z - coordinate of camera position
Vector3D position position vector, represents 8x, y, z<
double xAngle x component of XYZ Euler angle rotation
double yAngle y component of XYZ Euler angle rotation
double zAngle z component of XYZ Euler angle rotation
Vector3D angles orientation vector, represents 8xAngle, yAngle, zAngle<
Position
Return Type Name Arguments

void setCameraPosition Hx, y, zL
void setCameraPosition HpositionL
Vector3D getCameraPosition HL
Orientation
Return Type Name Arguments

16 | Standard Draw 3D Reference

Printed by Mathematica for Students

void setCameraOrientation HxAngle, yAngle, zAngleL
void setCameraOrientation HanglesL
void getCameraOrientation HL
Both
Return Type Name Arguments

void setCamera Hx, y, z, xAngle, yAngle, zAngleL
void setCamera Hposition, anglesL

Camera Direction

Instead of specifying orientation by Euler angles, it is easier in many cases to specify the vector

direction in which the camera should point. For example, (0,1,0) would cause the camera to rotate

such that it looks along the positive y-axis. Input is normalized. Can specify scalar or vector input.

Can also get the current camera direction.

All Arguments

Type Name Description

double x x - component of camera direction vector
double y y - component of camera direction vector
double z z - component of camera direction vector
Vector3D direction camera direction vector, same as 8x, y, z<
Position
Return Type Name Arguments

void setCameraDirection Hx, y, zL
void setCameraDirection HdirectionL
Vector3D getCameraDirection HL

Interactive Navigation

In StdDraw3D, you can move and navigate through the 3D scene interactively using mouse and

keyboard controls. The five camera navigation modes and their controls are described below. If you

are creating your own set of controls, use FIXED_MODE to disable interactivity. The camera mode

can also be changed through the GUI menu, and with the keyboard shortcuts listed in that menu.

Mode Descriptions

StdDraw3D.ORBIT_MODE

Rotates and zooms about a central orbit center, which is the origin by default but can be changed.

Primary Secondary Effect

Left Mouse Drag Orbit
Right Mouse Drag Pan
Mouse Wheel Alt Drag Zoom

StdDraw3D.FPS_MODE

First-person-shooter style controls with arrow keys and WASD to move and mouse to look. The

positive y-axis is always upward.

Standard Draw 3D Reference | 17

Printed by Mathematica for Students

First-person-shooter style controls with arrow keys and WASD to move and mouse to look. The

positive y-axis is always upward.

Primary Secondary Effect

Up Arrow W Forward
Left Arrow A Left
Down Arrow S Backward
Right Arrow D Right
Page Up Q Up
Page Down E Down

Mouse Drag Look

StdDraw3D.AIRPLANE_MODE

Similar to FPS_MODE, but the y-axis is not always upward, and can be rotated with Q and E.

Primary Secondary Effect

Up Arrow W Forward
Left Arrow A Left
Down Arrow S Backward
Right Arrow D Right
Page Up Q Rotate CCW
Page Down E Rotate CW

Mouse Drag Look

StdDraw3D.LOOK_MODE

No interactive movement is allowed, but uses the mouse drag to look around.

Primary Secondary Effect

Mouse Drag Look

StdDraw3D.FIXED_MODE

No interactive camera control is allowed. Use this if you want to only programmatically move your

camera, or if you are defining your own set of navigation controls.

Setting the Camera Mode

Sets the camera navigation mode. If no argument is specified, reverts to the default of

ORBIT_MODE. Can also get the current mode.

Arguments

Type Name Description

int mode one of the defined camera modes

Methods
Return Type Name Arguments

void setCameraMode HmodeL
void setCameraMode HL
int getCameraMode HL

Orbit Center

ORBIT_MODE is the default mode, in which dragging with the left mouse button orbits about a

single point. This is the origin by default, but can be changed. Can specify scalar or vector input.

Can also get the current orbit center.

18 | Standard Draw 3D Reference

Printed by Mathematica for Students

ORBIT_MODE is the default mode, in which dragging with the left mouse button orbits about a

single point. This is the origin by default, but can be changed. Can specify scalar or vector input.

Can also get the current orbit center.

All Arguments

Type Name Description

double x x - component of orbit center
double y y - component of orbit center
double z z - component of orbit center
Vector3D v orbit center, equivalent to 8x, y, z<
Methods
Return Type Name Arguments

void setOrbitCenter Hx, y, zL
void setOrbitCenter HvL
Vector3D getOrbitCenter HL

Points, Lines, and Surfaces

Besides solid three-dimensional objects, you can also draw lower-dimensional shapes like points,

lines, and polygons. Colors and thicknesses are still governed by pen settings. Methods for drawing

sets of objects rather than individual ones are much more efficient. Every drawing function returns a

Shape object, which can be moved, rotated, and scaled dynamically using the methods of the Shape

class.

Points

Draws a single point or a set of points with the given coordinates. Drawing a set of points is much

more efficient than drawing individual points, and you can still specify individual colors for each

point. For example, the first point is at (x[0], y[0], z[0]) with color colors[0].

All Arguments

Type Name Description

double x x - coordinate
double y y - coordinate
double z z - coordinate
double@D x set of x - coordinates
double@D y set of y - coordinates
double@D z set of z - coordinates
Color@D colors set of colors that correspond to the set of points

Return Value

Returns the drawn Shape object, which can be further manipulated.

Single Point
Return Type Name Arguments

Shape point Hx, y, zL
Set of Points

Standard Draw 3D Reference | 19

Printed by Mathematica for Students

Return Type Name Arguments

Shape points Hx, y, zL
Shape points Hx, y, z, colorsL

Lines

Draws a single line or a set of line with the given start and end coordinates. Drawing a set of lines is

much more efficient than drawing individual lines, and you can still specify individual colors for

each line. For example, the first line is from (x[0], y[0], z[0]) to (x[1], y[1], z[1]), and the second

line is from (x[1], y[1], z[1]) to (x[2], y[2], z[2]). Vertex colors can be specified by the given array,

and line colors are blends of its two vertex colors.

All Arguments

Type Name Description

double x1 x - coordinate of the start point
double y1 y - coordinate of the start point
double z1 z - coordinate of the start point
double x2 x - coordinate of the end point
double y2 y - coordinate of the end point
double z2 z - coordinate of the end point
double@D x set of x - coordinates of the line vertices
double@D y set of y - coordinates of the line vertices
double@D z set of z - coordinates of the line vertices
Color@D colors set of colors that correspond to the set of lines

Return Value

Returns the drawn Shape object, which can be further manipulated.

Single Line
Return Type Name Arguments

Shape line Hx1, y1, z1, x2, y2, z2L
Set of Lines
Return Type Name Arguments

Shape lines Hx, y, zL
Shape lines Hx, y, z, colorsL

Polygons

Draws a 2D polygon in 3D space with the given vertices. Vertices should be planar. Can specify

filled or wireframe.

Arguments

Type Name Description

double@D x x - coordinates of each vertex
double@D y y - coordinates of each vertex
double@D z z - coordinates of each vertex

20 | Standard Draw 3D Reference

Printed by Mathematica for Students

Return Value

Returns the drawn Shape object, which can be further manipulated.

Filled Polygon
Return Type Name Arguments

Shape polygon Hx, y, zL
Wireframe Polygon
Return Type Name Arguments

Shape wirePolygon Hx, y, zL
Triangles

Draws a set of triangles which are defined by the given coordinates. Coordinates are provided in an

N by 9 array, where N is the number of triangles to draw and points[i] = {x1, y1, z1, x2, y2, z2, x3,

y3, z3}. Can be used to create custom 3D meshes. Can specify filled or wireframe.

Arguments

Type Name Description

double@D@D points set of nine vertex coordinates for N triangles
Color@D colors set of colors that correspond to the set of triangles

Return Value

Returns the drawn Shape object, which can be further manipulated.

Filled Triangles
Return Type Name Arguments

Shape triangles HpointsL
Shape triangles Hpoints, colorsL
Wireframe Triangles
Return Type Name Arguments

Shape wireTriangles HpointsL
Shape wireTriangles Hpoints, colorsL

Saving and Loading

You can save your current drawing window as an image file or a 3D scene. The 3D scene can be

loaded later without having the original code that created it. You can also use the GUI toolbar menu

of the drawing window or the keyboard shortcuts listed there.

Image File

Saves the current drawing window to a file. The specified file must have a .png or .jpg extension!

Arguments

Type Name Description

Standard Draw 3D Reference | 21

Printed by Mathematica for Students

String filename name of the file to save to

Methods
Return Type Name Arguments

void save HfilenameL
3D Scene

There is experimental support for saving and loading a 3D scene as a file. When you save, the

current 3D scene in the drawing window is written to a file which can be loaded back in. Some

computers have been found to not load properly. The recommended extension for identification

purposes is .3d.

Arguments

Type Name Description

String filename name of the file to save or load

Methods
Return Type Name Arguments

void saveScene3D HfilenameL
void loadScene3D HfilenameL

Lights

Light in the 3D scene is what controls the way they appear, and it is fully controllable. Light in

StdDraw3D behaves similarly to actual light. At the initialization of each 3D scene,

setDefaultLight() is called, which places two white directional lights in the scene - this is why a

sphere has two bright sides and a dark band in the middle. You can only see object colors that can

be reflected by the light color. Thus, white light makes any color visible, but if you only have red

light in the scene, you will only see the red component of object colors.

Light Utilities

The default lighting consists of two white directional lights. If you want to set up custom lighting,

then clear the existing lights with clearLight() and add your own.

Methods
Return Type Name Arguments

void setDefaultLight HL
void clearLight HL

Ambient Light

Ambient light is light that is everywhere, regardless of position or orientation. If there is ambient

light, every object is lit up equally by it. Usually you want to keep ambient light very low, so pick a

dark color or a very transparent one.

Arguments

22 | Standard Draw 3D Reference

Printed by Mathematica for Students

Type Name Description

Color col color of the light

Return Value

Returns the rendered Light object, which can be further manipulated.

Methods
Return Type Name Arguments

Light ambientLight HcolL
Point Light

Point lights emanate from a single point (x, y, z). They light up closer objects more than faraway

objects. Can specify scalar or vector input. Can specify a power multiplier for the light, or go with a

default of 1.0

All Arguments

Type Name Description

double x x - coordinate of the light source
double y y - coordinate of the light source
double z z - coordinate of the light source
Vector3D origin origin of the light source, equal to 8x, y, z<
Color col color of the light
double power power multiplier of the light

Return Value

Returns the rendered Light object, which can be further manipulated.

Methods
Return Type Name Arguments

Light pointLight Hx, y, z, col, powerL
Light pointLight Hx, y, z, colL
Light pointLight Horigin, col, powerL
Light pointLight Horigin, colL

Directional Light

Directional lights shine in a single direction (x,y,z), but appear to come from far away. They will

always light up exactly half of a sphere. Can specify scalar or vector input.

All Arguments

Type Name Description

double x x - component of the light direction
double y y - component of the light direction
double z z - component of the light direction
Vector3D dir direction of the light, equal to 8x, y, z<
Color col color of the light

Standard Draw 3D Reference | 23

Printed by Mathematica for Students

Return Value

Returns the rendered Light object, which can be further manipulated.

Methods
Return Type Name Arguments

Light directionalLight Hx, y, z, colL
Light directionalLight Hdir, colL

Fog

Fog makes objects that are far harder to see. You can only see fog in front of an object, you can’t

see fog obscuring empty space. You can control the strength and color of the fog.

All Arguments

Type Name Description

Color col color of the fog
double frontDistance distance from the camera where fog becomes noticable
double backDistance distance from the camera where fog is 100 % opaque

Methods
Return Type Name Arguments

void addFog Hcol, frontDistance, backDistanceL
void clearFog HL

Sounds

Create simple and efficient sound effects for interactive games or simulations, as well as

background music. Sounds play in separate threads, and do not need time for preloading.

Sound Utilities

By default, StdDraw3D is silent. To stop a playing sound, clear the sound stack.

Methods
Return Type Name Arguments

void clearSound HL
Ambient Sound

Ambient sound is heard everywhere in the 3D scene, regardless of position or orientation. Sound

starts playing as soon as the function is called, and runs in a separate thread. Can specify to loop the

sound infinitely until cleared.

All Arguments

Type Name Description

String filename audio file of sound to play
boolean loop option to loop the sound until cleared

24 | Standard Draw 3D Reference

Printed by Mathematica for Students

Methods
Return Type Name Arguments

void playAmbientSound HfilenameL
void playAmbientSound Hfilename, loopL

Point Sound

Point sound emanates from a single origin, and is louder if you are near it and pointing toward it.

Unfortunately, there are currently unexpected problems that don’t allow point sounds to work, so

this feature is not supported. Any help would be appreciated.

Mouse and Keyboard

These functions give the state of the mouse and keyboard in the drawing window. They will not

work when focus is outside the drawing window. They can be used to create new navigation

controls or to provide interactivity to simulations, games, and models.

Mouse Buttons

Is the given mouse button (1 = left, 2 = right, 3 = middle) currently pressed down? Also included is

a function that returns true if any mouse button is pressed.

Return Value

Returns the state of the mouse button.

Methods
Return Type Name Arguments

boolean mousePressed HL
boolean mouse1Pressed HL
boolean mouse2Pressed HL
boolean mouse3Pressed HL

Mouse Position

Return the current x and y position of the mouse, in terms of the coordinates defined by the scale

(equal to the overlay drawing coordinates).

Return Value

Returns the x or y coordinate of the current mouse position.

Methods
Return Type Name Arguments

double mouseX HL
double mouseY HL

Key Pressed

Is the given key currently pressed down? The keys correnspond to physical keys, not characters. For

letters, use the uppercase character to refer to the key. For arrow keys and modifiers such as shift

and ctrl, refer to the KeyEvent constants, such as KeyEvent.VK_SHIFT.

Standard Draw 3D Reference | 25

Printed by Mathematica for Students

Is the given key currently pressed down? The keys correnspond to physical keys, not characters. For

letters, use the uppercase character to refer to the key. For arrow keys and modifiers such as shift

and ctrl, refer to the KeyEvent constants, such as KeyEvent.VK_SHIFT.

Arguments

Type Name Description

int key the key of interest

Return Value

True if the given physical key is pressed.

Methods
Return Type Name Arguments

boolean isKeyPressed HkeyL
Key Stack

When a character is typed, it is added to the top of a character stack and kept track of. These

methods let you find out when new keys have been typed and get those keys in the correct order.

These typed values refer to characters, not to physical keys. For example, ‘6’ will be different from

‘^’.

Return Value

hasNextKeyTyped() returns true if the user has typed a new character, and nextKeyTyped() returns

the typed character.

Methods
Return Type Name Arguments

boolean hasNextKeyTyped HL
char nextKeyTyped HL

2D Overlay

You can draw 2D overlays on top of the 3D drawing window, to act as a heads up display or

present informational text. All drawing functions of the Standard Draw library are available in

StdDraw3D under the prefix of “StdDraw3D.overlay”. For example, use

StdDraw3D.overlayCircle(0, 0, 0.5) instead of StdDraw.circle(0,0,0.5). Overlay coordinates

correspond to those set by StdDraw3D.setScale() but do not depend on the camera position or

rotation.

Circle

Draws a circle of radius r, centered on (x, y). Can be an outline or filled.

Arguments

Type Name Description

26 | Standard Draw 3D Reference

Printed by Mathematica for Students

double x x - coordinates of center
double y y - coordinates of center
double r radius

Methods
Return Type Name Arguments

void overlayCircle Hx, y, rL
void overlayFilledCircle Hx, y, rL

Square

Draws a square of side length 2r, centered on (x, y). Can be an outline or filled.

Arguments

Type Name Description

double x x - coordinates of center
double y y - coordinates of center
double r radius

Methods
Return Type Name Arguments

void overlaySquare Hx, y, rL
void overlayFilledSquare Hx, y, rL

Rectangle

Draws a rectangle of given half-width and half-height centered on (x, y). Can be an outline or filled.

Arguments

Type Name Description

double x x - coordinates of center
double y y - coordinates of center
double halfWidth half of the rectangle width
double halfHeight half of the rectangle height

Methods
Return Type Name Arguments

void overlayRectangle Hx, y, halfWidth, halfHeightL
void overlayFilledRectangle Hx, y, halfWidth, halfHeightL

Ellipse

Draws a filled ellipse with given semimajor and semiminor axes, centered on (x, y). Can be an

outline or filled.

Arguments

Type Name Description

double x x - coordinates of center
double y y - coordinates of center
double semiMajorAxis ellipse semimajor axis
double semiMinorAxis ellipse semiminor axis

Standard Draw 3D Reference | 27

Printed by Mathematica for Students

Methods
Return Type Name Arguments

void overlayEllipse Hx, y, semiMajorAxis, semiMinorAxisL
void overlayFilledEllipse Hx, y, semiMajorAxis, semiMinorAxisL

Pixel

Draws a single pixel at (x, y).

Arguments

Type Name Description

double x x - coordinate
double y y - coordinate

Methods
Return Type Name Arguments

void overlayPixel Hx, yL
Point

Draws a small point at (x, y).

Arguments

Type Name Description

double x x - coordinate
double y y - coordinate

Methods
Return Type Name Arguments

void overlayPoint Hx, yL
Line

Draws a line from (x0, y0) to (x1, y1).

Arguments

Type Name Description

double x0 x - coordinate of the start point
double y0 y - coordinate of the start point
double x1 x - coordinate of the end point
double y1 y - coordinate of the end point

Methods
Return Type Name Arguments

void overlayLine Hx0, y0, x1, y1L
Arc

Draws an arc of radius r, centered on (x, y), from angle1 to angle2 (in degrees).

Arguments

28 | Standard Draw 3D Reference

Printed by Mathematica for Students

Type Name Description

double x x - coordinates of center
double y y - coordinates of center
double r radius
double angle1 starting arc angle
double angle2 ending arc angle

Methods
Return Type Name Arguments

void overlayArc Hx, y, r, angle1, angle2L
Polygon

Draws a polygon with the given vertex coordinates. Can be an outline or filled.

Arguments

Type Name Description

double@D x x - coordinates of vertices
double@D y y - coordinates of vertices

Methods
Return Type Name Arguments

void overlayPolygon Hx, yL
void overlayFilledPolygon Hx, yL

Text

Writes the given text string in the pen font and size, aligned about the point (x, y). Can be rotated.

Useful for titles and HUD-style text in the drawing window.

All Arguments

Type Name Description

double x x - coordinate
double y y - coordinate
String text text to draw
double degrees angle of rotation

Methods
Return Type Name Arguments

void overlayText Hx, y, textL
void overlayText Hx, y, text, degreesL
void overlayTextLeft Hx, y, textL
void overlayTextRight Hx, y, textL

Picture

Draws a picture (gif, jpg, or png) centered on (x, y). Can rotated a given number of degrees, and

rescaled to w-by-h.

All Arguments

Type Name Description

double x x - coordinate

Standard Draw 3D Reference | 29

Printed by Mathematica for Students

double y y - coordinate
String s filename of image
double w width
double h height
double degrees angle of rotation

Methods
Return Type Name Arguments

void overlayPicture Hx, y, sL
void overlayPicture Hx, y, s, degreesL
void overlayPicture Hx, y, s, w, hL
void overlayPicture Hx, y, s, w, h, degreesL

Random Generators

For convenience, these methods which return commonly needed randomly generated parameters are

included in the StdDraw3D library.

Color

Generates a random opaque color. Can choose either a fully random color or a random color on the

rainbow.

Return Value

Returns a randomly generated color.

Methods
Return Type Name Arguments

Color randomColor HL
Color randomRainbowColor HL

Vector Direction

Returns a unit Vector3D in a random direction.

Return Value

Returns a random unit Vector3D.

Methods
Return Type Name Arguments

Vector3D randomDirection HL

30 | Standard Draw 3D Reference

Printed by Mathematica for Students

SHAPE CLASS

 Everything three-dimensional you draw in your scene from spheres to points to 3D text is actually a

Shape object. When you call a drawing function, it always returns a Shape object. If you keep a

reference to this object, you can manipulate the already drawn Shape instead of clearing and

redrawing it, which is a much more powerful and more efficient method of animation.

The Shape Class is referenced as StdDraw3D.Shape. There are no direct constructors or public

fields - every Shape is created through a static drawing function. Here is an example:

StdDraw3D.Shape ball = StdDraw3D.sphere(0,0,0,1);

ball.move(0.2,0,0); // Moves the sphere

Static Shape Manipulation

These static functions are included in this section because they deal directly with Shape objects.

They are powerful tools for creating efficient and advanced 3D scenes with StdDraw3D.

Combine

Combines any number of given Shape objects into one Shape object and returns it. Can input

individual Shape objects separated by commas or an array of Shape objects. Useful for creating

kinematic chains of relative motion

Arguments

Type Name Description

Shape H@DL shapes individual Shapes or an array of Shapes to copy

Return Value

Returns the combined Shape object.

Methods
Return Type Name Arguments

Shape combine H ... shapesL
Copy

Returns an identical copy of a given Shape. The copy can be controlled independently. Much more

efficient than redrawing a specific shape or model.

Arguments

Standard Draw 3D Reference | 31

Printed by Mathematica for Students

Type Name Description

Shape shape 3 D Shape to copy

Return Value

Returns a copy of the given Shape.

Methods
Return Type Name Arguments

Shape copy HshapeL

Position

There are several ways to move a Shape object in 3D space. You can move it based on absolute

coordinates or relative coordinates, or just set its position. For all methods, you can either specify

scalar components of movement or a vector.

Move Absolute

Moves this Shape in absolute coordinates by the given vector.

All Arguments

Type Name Description

double x x - component of move vector
double y y - component of move vector
double z z - component of move vector
Vector3D move vector to move by, equal to 8x, y, z<
Methods
Return Type Name Arguments

void move Hx, y, zL
void move HmoveL

Move Relative

Moves this Shape in relative coordinates by the given vector, where (x, y, z) components correspond

to (right, up, forward).

All Arguments

Type Name Description

double right x - component of move vector
double up y - component of move vector
double forward z - component of move vector
Vector3D move vector to move by, equal to 8right, up, forward<
Methods
Return Type Name Arguments

void moveRelative Hright, up, forwardL
void moveRelative HmoveL

32 | Standard Draw 3D Reference

Printed by Mathematica for Students

Set Position

Sets or gets the absolute position of this Shape.

All Arguments

Type Name Description

double x x - component of position vector
double y y - component of position vector
double z z - component of position vector
Vector3D pos new position vector, equal to 8x, y, z<
Methods
Return Type Name Arguments

void setPosition Hx, y, zL
void setPosition HposL
Vector3D getPosition HL

Orientation

There are many approaches to rotation in 3D space, and it is good to have options when orienting

Shape objects. For example, you may want to rotate based on a relative or absolute frame, and you

may prefer to use Euler angles, quaternions, axial rotations, or direction vectors. Each of these

methods is useful in a different context, especially when making games. For most methods, you can

either specify scalar components or a vector.

Rotate Absolute

Rotates this Shape by the given Euler angles (in degrees) in the absolute frame.

All Arguments

Type Name Description

double xAngle Euler rotation angle about x - axis
double yAngle Euler rotation angle about y - axis
double zAngle Euler rotation angle about z - axis
Vector3D angles Euler rotation angles

Methods
Return Type Name Arguments

void rotate HxAngle, yAngle, zAngleL
void rotate HanglesL

Rotate Relative

Rotates this Shape by the given Euler angles (in degrees) in the relative frame.

All Arguments

Type Name Description

double pitch pitch component of Euler rotation
double yaw yaw component of Euler rotation

Standard Draw 3D Reference | 33

Printed by Mathematica for Students

double roll roll component of Euler rotation
Vector3D angles vector to rotate by, equal to 8x, y, z<
Methods
Return Type Name Arguments

void rotateRelative Hpitch, yaw, rollL
void rotateRelative HanglesL

Set Orientation

Sets or gets the absolute orientation of this Shape by the given Euler angles (in degrees).

All Arguments

Type Name Description

double xAngle Euler rotation angle about x - axis
double yAngle Euler rotation angle about y - axis
double zAngle Euler rotation angle about z - axis
Vector3D angles Euler rotation angles

Methods
Return Type Name Arguments

void setOrientation HxAngle, yAngle, zAngleL
void setOrientation HanglesL
Vector3D getOrientation HL

Rotate about Axis

Rotates this Shape about a given rotation axis by a certain number of degrees.

Arguments

Type Name Description

Vector3D axis vector that defines the axis of rotation
double angle angle of rotation Hin degreesL
Methods
Return Type Name Arguments

void rotateAxis Haxis, angleL
Look At

Sets this Shape to point toward a specific point in space. Can specify an up vector, or use the

default of the positive y-axis. Useful for something like animating a pair of eyes that need to look at

something else that is moving.

All Arguments

Type Name Description

Vector3D center point to look at
Vector3D up direction of up

Methods
Return Type Name Arguments

34 | Standard Draw 3D Reference

Printed by Mathematica for Students

void lookAt HcenterL
void lookAt Hcenter, upL

Set Direction

Sets or gets the vector direction that this Shape is currently pointing in. Can specify an up vector, or

use the default of the positive y-axis. Useful for something like animating a cannon, which needs to

point in a specific direction.

All Arguments

Type Name Description

Vector3D direction direction vector
Vector3D up direction of up

Methods
Return Type Name Arguments

void setDirection HdirectionL
void setDirection Hdirection, upL
Vector3D getDirection HL

Size

Scales the size of this Shape relative to its current size. For example, a.scale(2) doubles the size of

the Shape named a.

Arguments

Type Name Description

double scale scale multiplier

Methods
Return Type Name Arguments

void scale HscaleL

Color

Sets the color of everything contained inside this Shape to the given color. The color change is

recursive, and Shapes with multiple colors will become monotone. Can also specify transparency.

All Arguments

Type Name Description

Color c new color
int alpha transparency H0 - 255L
Methods
Return Type Name Arguments

void setColor HcL
void setColor Hc, alphaL

Standard Draw 3D Reference | 35

Printed by Mathematica for Students

Matching

Matches the position and orientation of this Shape with that of a given Shape or that of the Camera

object.

All Arguments

Type Name Description

Shape s object of reference
Camera c object of reference

Methods
Return Type Name Arguments

void match HsL
void match HcL

Hiding

Hiding a Shape disappears it from the drawing window. While hidden, you can still manipulate the

Shape as always, but you cannot see it. You can bring back the Shape by unhiding it. The methods

hide() and unhide() are similar to show() and clear() for a single Shape object. Hiding is also useful

for preloading large OBJ models so there is no load time when using them later.

Methods
Return Type Name Arguments

void hide HL
void unhide HL

36 | Standard Draw 3D Reference

Printed by Mathematica for Students

CAMERA CLASS

The camera can be controlled with the static functions already listed in this reference. However,

much more advanced control of the camera can be obtained by manipulating the Camera object. The

Camera is basically equivalent to a Shape with a couple of extra functions, so it can be moved and

rotated just like a Shape. This functionality works well with point-of-view simulations and games.

The Camera Class is referenced as StdDraw3D.Camera. There are no direct constructors or public

fields - the only way to get the Camera is through the static function camera(). Here is an example:

StdDraw3D.Camera cam = StdDraw3D.camera();

cam.rotateRelative(0,10,0); // Rotates the view upward

Getting the Camera Object

This static function returns the Camera object, which represents the viewpoint of the drawing

window. It can be manipulated in real time just like any other object in the 3D scene.

Return Value

Returns the Camera object.

Method
Return Type Name Arguments

Camera camera HL

Methods from Shape Class

The Camera class has kinematic methods equivalent to those of the Shape class. A few methods are

not available to the Camera class, because the Camera cannot be scaled, colored, or hidden. The

Camera class has the following methods of the Shape class:

è move()

è moveRelative()

è setPosition()

è getPosition()

è rotate()

è rotateRelative()

è setOrientation()

è getOrientation()

è rotateAxis()

Standard Draw 3D Reference | 37

Printed by Mathematica for Students

è lookAt()

è setDirection()

è getDirection()

è match()

Additional Methods

These methods are specifically for the Camera, and are useful in some scenarios.

Pair

Pairs the camera’s position and orientation to those of a Shape, over time and motion. This is

similar to calling match() for every frame of an animation, but may be less jumpy in some cases.

Call unpair() to release the pairing.

Arguments

Type Name Description

Shape s object to pair with

Methods
Return Type Name Arguments

void pair HsL
void unpair HL

Rotate FPS

Rotates the Camera by the given Euler angles (in degrees), but ensures that the positive y-axis is

always in the upward direction and that the Camera does not point closer than 5 degrees from

vertical. This is similar to the view control of most first person shooters.

All Arguments

Type Name Description

double xAngle rotation angle about x - axis
double yAngle rotation angle about y - axis
double zAngle rotation angle about z - axis
Vector3D angles rotation angles

Methods
Return Type Name Arguments

void rotateFPS HxAngle, yAngle, zAngleL
void rotateFPS HanglesL

38 | Standard Draw 3D Reference

Printed by Mathematica for Students

LIGHT CLASS

When you create a light in StdDraw3D, it returns a Light object. Light objects can be manipulated

just like Shapes, and are useful if you want moving lights or lights that change color and brightness.

The Light Class is referenced as StdDraw3D.Light. There are no direct constructors or public fields

- every Light is created through a static light function. Here is an example:

StdDraw3D.Light bulb = StdDraw3D.pointLight(2,1,3,StdDraw3D.RED);

bulb.setColor(StdDraw3D.BLUE); // Turns the red light blue

Methods from Shape Class

The Light class has kinematic methods equivalent to those of the Shape class. A light cannot be

scaled, so scale() is not valid for Lights. The Light class has the following methods of the Shape

class:

è move()

è moveRelative()

è setPosition()

è getPosition()

è rotate()

è rotateRelative()

è setOrientation()

è getOrientation()

è rotateAxis()

è lookAt()

è setDirection()

è getDirection()

è setColor()

è match()

è hide()

è unhide()

Note, the most important functions from these for a Light are setColor() and hide().

Power of a Point Light

Point lights affect near objects more than faraway objects. The setPower() method allows control of

the power of a point Light. Ambient and directional lights do not depend on distance, and their

brightness is controlled by the light color only.

Standard Draw 3D Reference | 39

Printed by Mathematica for Students

Arguments

Type Name Description

double power power of the point light

Method
Return Type Name Arguments

void scalePower HpowerL

40 | Standard Draw 3D Reference

Printed by Mathematica for Students

VECTOR3D CLASS

Vector3D is an immutable three-dimensional vector class with useful vector operations like

projection and reflection. It is used throughout StdDraw3D to deal with 3D points, vectors, and

tuples. Technically, points are not be vectors and should have their own class, but they are

represented with vectors in StdDraw3D for ease of use.

The Vector3D class is referenced as StdDraw3D.Vector3D. Here is an example of usage:

StdDraw3D.Vector3D p = new StdDraw3D.Vector3D (0,0.5,-2);

StdDraw3D.setCameraPosition (p);

Fields

Vector3D is composed of three double-precision components: x, y, and z. The values are immutable

but directly accessible by calling the name of the vector followed by the field. For example:

StdDraw3D.Vector3D v = new StdDraw3D.Vector3D (1,2,3);

double xComp = v.x; // xComp now equals 1

Vector3D Fields

Type Name Description

double x x - component of this vector
double y y - component of this vector
double z z - component of this vector

Constructors

Creates a Vector3D object from three components or an array of components. If no arguments are

given, initializes to the zero vector.

All Arguments

Type Name Description

double x x - component of the vector
double y y - component of the vector
double z z - component of the vector
double@D c array of three vector components, equal to 8x, y, z<
Return Value

Newly created Vector3D.

Standard Draw 3D Reference | 41

Printed by Mathematica for Students

Constructors
Return Type Name Arguments

Vector3D Vector3D Hx, y, zL
Vector3D Vector3D HcL
Vector3D Vector3D HL

Methods

Addition

Returns the sum of this vector and that vector. That vector can be either a Vector3D or three

components.

All Arguments

Type Name Description

double x x - component of that vector
double y y - component of that vector
double z z - component of that vector
Vector3D that that vector, same as to 8x, y, z<
Methods
Return Type Name Arguments

Vector3D plus HthatL
Vector3D plus Hx, y, zL

Subtraction

Returns the difference of this vector and that vector. That vector can be either a Vector3D or three

components.

All Arguments

Type Name Description

double x x - component of that vector
double y y - component of that vector
double z z - component of that vector
Vector3D that that vector, same as to 8x, y, z<
Methods
Return Type Name Arguments

Vector3D minus HthatL
Vector3D minus Hx, y, zL

Multiplication

Returns the product of this vector either uniformly with a single scalar or component-wise with

three scalars.

All Arguments

Type Name Description

double a scalar to multiply x - component by

42 | Standard Draw 3D Reference

Printed by Mathematica for Students

double b scalar to multiply y - component by
double c scalar to multiply z - component by
double k scalar to multiply each component by Hie. a = b = cL
Methods
Return Type Name Arguments

Vector3D times HkL
Vector3D times Ha, b, cL

Magnitude

Returns the magnitude of this vector.

Methods
Return Type Name Arguments

double mag HL
Direction

Returns the unit Vector3D in the direction of this vector.

Methods
Return Type Name Arguments

Vector3D direction HL
Distance

Returns the Euclidian distance between this vector and that vector.

Arguments

Type Name Description

Vector3D that that vector

Methods
Return Type Name Arguments

double distanceTo HthatL
Dot Product

Returns the dot product of this vector and that vector.

Arguments

Type Name Description

Vector3D that that vector

Methods
Return Type Name Arguments

double dot HthatL

Standard Draw 3D Reference | 43

Printed by Mathematica for Students

Cross Product

Returns the cross product of this vector and that vector.

Arguments

Type Name Description

Vector3D that that vector

Methods
Return Type Name Arguments

Vector3D cross HthatL
Angle

Returns the smallest angle between this vector and that vector, in degrees.

Arguments

Type Name Description

Vector3D that that vector

Methods
Return Type Name Arguments

double angle HthatL
Projection

Returns the projection of this vector onto the line defined by the given vector.

Arguments

Type Name Description

Vector3D line vector that defines the line of projection

Methods
Return Type Name Arguments

Vector3D proj HlineL
Reflection

Returns the reflection of this vector across the line defined by the given vector.

Arguments

Type Name Description

Vector3D line vector that defines the line of reflection

Methods
Return Type Name Arguments

Vector3D reflect HlineL

44 | Standard Draw 3D Reference

Printed by Mathematica for Students

To String

Returns a formatted string representation of this vector “(this.x, this.y, this.z)”.

Methods
Return Type Name Arguments

String toString HL
Draw

Draws the tip of this vector from the origin as a sphere of radius 0.01.

Methods
Return Type Name Arguments

void draw HL

This manual and StdDraw3D was written by Hayk Martirosyan in 2011. If you need help, found a bug, or

have a question, feel free to email hmartiro@princeton.edu. If you have in interest in working on the

project, let me know.

Standard Draw 3D Reference | 45

Printed by Mathematica for Students

