Below is the syntax highlighted version of transition.py
from §1.6 Case Study: PageRank.
#----------------------------------------------------------------------- # transition.py #----------------------------------------------------------------------- import stdio import stdarray # Read links from standard input and write the corresponding # transition matrix to standard output. First, process the input # to count the outlinks from each page. Then apply the 90-10 rule to # compute the transition matrix. Assume that there are no pages that # have no outlinks in the input. n = stdio.readInt() linkCounts = stdarray.create2D(n, n, 0) outDegrees = stdarray.create1D(n, 0) while not stdio.isEmpty(): # Accumulate link counts. i = stdio.readInt() j = stdio.readInt() outDegrees[i] += 1 linkCounts[i][j] += 1 stdio.writeln(str(n) + ' ' + str(n)) for i in range(n): # Print probability distribution for row i. for j in range(n): # Print probability for column j. p = (.90 * linkCounts[i][j] / outDegrees[i]) + (.10 / n) stdio.writef('%8.5f', p) stdio.writeln() #----------------------------------------------------------------------- # python transition.py < tiny.txt # 5 5 # 0.02000 0.92000 0.02000 0.02000 0.02000 # 0.02000 0.02000 0.38000 0.38000 0.20000 # 0.02000 0.02000 0.02000 0.92000 0.02000 # 0.92000 0.02000 0.02000 0.02000 0.02000 # 0.47000 0.02000 0.47000 0.02000 0.02000 # python transition.py < medium.txt # (Output omitted.)