Below is the syntax highlighted version of gaussinv.py
from §2.1 Using and Defining Functions.
#----------------------------------------------------------------------- # gaussinv.py #----------------------------------------------------------------------- import stdio import sys import math #----------------------------------------------------------------------- # Return the value of the Gaussian probability function with mean 0.0 # and standard deviation 1.0 at the given x value. def phi(x): return math.exp(-x * x / 2.0) / math.sqrt(2.0 * math.pi) #----------------------------------------------------------------------- # Return the value of the Gaussian probability function with mean mu # and standard deviation sigma at the given x value. def pdf(x, mu=0.0, sigma=1.0): return phi((x - mu) / sigma) / sigma #----------------------------------------------------------------------- # Return the value of the cumulative Gaussian distribution function # with mean 0.0 and standard deviation 1.0 at the given z value. def Phi(z): if z < -8.0: return 0.0 if z > 8.0: return 1.0 total = 0.0 term = z i = 3 while total != total + term: total += term term *= z * z / float(i) i += 2 return 0.5 + phi(z) * total #----------------------------------------------------------------------- # Return the value of the cumulative Gaussian distribution function # with mean mu and standard deviation sigma at the given z value. def cdf(z, mu=0.0, sigma=1.0): return Phi((z - mu) / sigma) #----------------------------------------------------------------------- def _PhiInverse(y, delta, lo, hi): mid = lo + ((hi - lo) / 2.0) if (hi - lo) < delta: return mid if Phi(mid) > y: return _PhiInverse(y, delta, lo, mid) else: return _PhiInverse(y, delta, mid, hi) #----------------------------------------------------------------------- # Return x such that Phi(x) = y. def PhiInverse(y): return _PhiInverse(y, .00000001, -8.0, 8.0) #----------------------------------------------------------------------- # For testing. # Accept float z. Use it to test the PhiInverse() function. Write the # results to standard output. z = float(sys.argv[1]) y = Phi(z); x = PhiInverse(y) stdio.writeln(y); stdio.writeln(x); #----------------------------------------------------------------------- # python gaussinv.py 1 # 0.841344746068543 # 1.0000000037252903 # python gaussinv.py 2 # 0.9772498680518207 # 2.0000000037252903 # python gaussinv.py 5 # 0.9999997133484283 # 5.00000000372529 # python gaussinv.py 8 # 0.9999999999999993 # 7.984248783439398