Below is the syntax highlighted version of horner.py
from §2.1 Using and Defining Functions.
#----------------------------------------------------------------------- # horner.py #----------------------------------------------------------------------- import stdio import stdarray import sys import math #----------------------------------------------------------------------- # Use Horner's method to compute and return the polynomial # a[0] + a[1] x^1 + a[2] x^2 + ... + a[n-1] x^(n-1) # evaluated at x. def evaluate(x, a): result = 0 for i in range(len(a)-1, -1, -1): result = a[i] + (x * result) return result #----------------------------------------------------------------------- # Accept integer command-line argument n, compute n terms # of the Taylor series e^x = 1 + x + x^2/2! + .... Then read # values x from standard input, and write to standard output the # polynomial evaluated at x. Also write to standard output the # value computed by math.exp(x). n = int(sys.argv[1]) # Compute coeffients for Taylor series # e^x = 1 + x + x^2/2! + x^3/3! + ... a = stdarray.create1D(n, 0.0) a[0] = 1.0 for i in range(1, n): a[i] = a[i-1] / float(i) # Evaluate the polynomial at values x read from standard input. while not stdio.isEmpty(): x = stdio.readFloat() stdio.writeln(evaluate(x, a)) stdio.writeln(math.exp(x)) stdio.writeln() #----------------------------------------------------------------------- # python horner.py 30 # 0 # 1.0 # 1.0 # # 1 # 2.718281828459045 # 2.718281828459045 # # 2 # 7.38905609893065 # 7.38905609893065 # # .5 # 1.6487212707001282 # 1.6487212707001282 # # -.1 # 0.9048374180359595 # 0.9048374180359595 #