Below is the syntax highlighted version of percolationv.py
from §2.4 Case Study: Percolation.
#----------------------------------------------------------------------- # percolationv.py #----------------------------------------------------------------------- import stdarray import stdio #----------------------------------------------------------------------- # isOpen is a matrix that represents the open sites of a system. # Compute and return a matrix that represents the full sites of # that system. For now, consider only vertical percolation. def flow(isOpen): n = len(isOpen) isFull = stdarray.create2D(n, n, False) for j in range(n): isFull[0][j] = isOpen[0][j] for i in range(1, n): for j in range(n): if isOpen[i][j] and isFull[i-1][j]: isFull[i][j] = True return isFull #----------------------------------------------------------------------- # open is matrix that represents the open sites of a system. Return # True if that system percolates, and False otherwise. def percolates(isOpen): # Compute the full sites of the system. isFull = flow(isOpen) # If any site in the bottom row is full, then the system # percolates. n = len(isFull) for j in range(n): if isFull[n-1][j]: return True return False #----------------------------------------------------------------------- # Read from standard input a boolean matrix that represents the # open sites of a system. Write to standard output a boolean # matrix representing the full sites of the system. Then write # True if the system percolates and False otherwise. def main(): isOpen = stdarray.readBool2D() stdarray.write2D(flow(isOpen)) stdio.writeln(percolates(isOpen)) if __name__ == '__main__': main() #----------------------------------------------------------------------- # python percolationv.py < test5.txt # 5 5 # 0 1 1 0 1 # 0 0 1 0 1 # 0 0 0 0 1 # 0 0 0 0 1 # 0 0 0 0 1 # True # python percolationv.py < test8.txt # 8 8 # 0 0 1 1 1 0 0 0 # 0 0 0 1 1 0 0 0 # 0 0 0 0 0 0 0 0 # 0 0 0 0 0 0 0 0 # 0 0 0 0 0 0 0 0 # 0 0 0 0 0 0 0 0 # 0 0 0 0 0 0 0 0 # 0 0 0 0 0 0 0 0 # False